
P
os
te
d
on

5
M
ar

20
25

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
74
11
45
76
.6
1
41
02
28
/v

1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

Multi-Agent Deep Reinforcement Learning for Penetration Testing

of IoT Devices through their Mobile Companion App

Francesco Pagano1, Mariano Ceccato1, Alessio Merlo2, and Paolo Tonella3

1University of Verona
2CASD - School of Advanced Defense Studies
3Università della Svizzera italiana

March 05, 2025

Abstract

The increasing integration of IoT devices into critical infrastructure has made them prime targets for cyberattacks. Many of

these devices rely on outdated or legacy software, which introduces inherent vulnerabilities and complicates firmware updates,

making identifying and testing these weaknesses essential. Traditional methods typically employ black-box approaches, mutating

network requests generated during device operation to craft potential attack vectors. However, these methods face limitations

when dealing with encrypted or proprietary protocols. Recent tools, such as Diane and IoTFuzzer, interact with IoT devices

through their mobile companion apps and use fuzzing techniques to modify request content, causing crashes in IoT device

software. Although these approaches can effectively trigger software crashes, they do not generate actual exploits, as they do not

precisely target or exploit specific vulnerabilities. To address these limitations, we introduce MITHRAS, the first approach that

uses mobile companion apps to deliver maliciously mutated requests directly to IoT devices, explicitly targeting Remote Code

Execution (RCE) vulnerabilities. MITHRAS uses Deep Reinforcement Learning to efficiently navigate the communication code

within companion apps, dynamically mutating request payloads before transmission. Adapting to previous attack outcomes,

MITHRAS refines its strategy, mimicking human decision-making to improve the effectiveness of exploit generation.

1

Multi-Agent Deep Reinforcement Learning for Penetration Testing of IoT
Devices through their Mobile Companion App

FRANCESCO PAGANO, University of Verona, Italy

MARIANO CECCATO, University of Verona, Italy

ALESSIO MERLO, CASD – School of Advanced Defense Studies, Italy

PAOLO TONELLA, Università della Svizzera italiana, Switzerland

The increasing integration of IoT devices into critical infrastructure has made them prime targets for cyberattacks. Many of these
devices rely on outdated or legacy software, which introduces inherent vulnerabilities and complicates firmware updates, making
identifying and testing these weaknesses essential. Traditional methods typically employ black-box approaches, mutating network
requests generated during device operation to craft potential attack vectors. However, these methods face limitations when dealing
with encrypted or proprietary protocols. Recent tools, such as Diane and IoTFuzzer, interact with IoT devices through their mobile
companion apps and use fuzzing techniques to modify request content, causing crashes in IoT device software. Although these
approaches can effectively trigger software crashes, they do not generate actual exploits, as they do not precisely target or exploit
specific vulnerabilities. To address these limitations, we introduce MITHRAS, the first approach that uses mobile companion apps
to deliver maliciously mutated requests directly to IoT devices, explicitly targeting Remote Code Execution (RCE) vulnerabilities.
MITHRAS uses Deep Reinforcement Learning to efficiently navigate the communication code within companion apps, dynamically
mutating request payloads before transmission. Adapting to previous attack outcomes, MITHRAS refines its strategy, mimicking
human decision-making to improve the effectiveness of exploit generation.

CCS Concepts: • Security and privacy→ Software security engineering.

Additional Key Words and Phrases: penetration testing, IoT systems, test generation

1 INTRODUCTION

Internet of Things (IoT) devices have been growing in number over the years. The number of active devices has increased
from 3.4 billion to 5.55 billion, according to Exploding Topics [20]. Kumar et al. [31] studied IoT devices in people’s
homes, showing how these devices spread worldwide and which companies make the most of them.

The rapid growth of IoT has raised security concerns as such devices often expose several vulnerabilities, as shown
by the increasing number of reported Common Vulnerabilities and Exposures (CVEs). For example, the number of
CVEs for routers increased from 134 in 2019 to 435 in 2023 [12], demanding reliable methodologies to discover and fix
vulnerabilities. Recent studies [1, 46] demonstrated that most of these vulnerabilities are in the firmware. The firmware
includes the operating system, the startup software, and the files that control the device’s operation.

Several research projects focus on identifying security issues in IoT devices, such as Karonte [39] and FirmUp [14].
These solutions primarily use static analysis techniques to detect vulnerabilities within the firmware code, often
resulting in many false positives. They do not identify specific inputs that could exploit these vulnerabilities. Other
research works, such as Snipuzz [21] and Labrador [32], aim to automatically identify firmware vulnerabilities at
runtime by executing software within the firmware. These solutions work in a black-box manner, crafting malicious

Authors’ addresses: Francesco Pagano, francesco.pagano@univr.it, University of Verona, Verona, Italy; Mariano Ceccato, mariano.ceccato@univr.it,
University of Verona, Verona, Italy; Alessio Merlo, alessio.merlo@unicasd.it, CASD – School of Advanced Defense Studies, Rome, Italy; Paolo Tonella,
paolo.tonella@usi.ch, Università della Svizzera italiana, Lugano, Switzerland.

1

2 Pagano et al.

requests to the IoT device by collecting and modifying a set of requests generated by the IoT device itself during regular
operation. However, these methods are ineffective if the network requests are encrypted or use proprietary protocols.

To address the challenge of making effective malicious requests to IoT devices, solutions such as those proposed
in [5] and [38] take advantage of existing client applications, like companion mobile apps, that interact with IoT devices.
These clients already implement all the necessary communication functions, allowing users to interact with IoT devices
through smartphones. Previous research used these apps to modify the content of network requests directed to the
companion app’s connected IoT device before they are packaged into network requests. This approach aims to identify
inputs that may cause the IoT device’s program to crash. These solutions have demonstrated greater effectiveness in
generating valid requests accepted by the connected IoT device than approaches that attempt to craft requests from
scratch. While they additionally leverage static analysis techniques on the companion app to guide it towards the
communication functions responsible for interacting with the IoT device, these solutions still operate in a complete
black-box manner concerning the IoT device, which introduces several limitations:

• Limited feedback on the attack’s success. This limitation forces these solutions to rely on random modifi-
cations of the request’s content, with feedback depending on either a network response or its absence. This
approach can result in false positives, as a negative response code may indicate a poorly structured request
rather than a successful attack. Additionally, the absence of a response could be due to network issues, such as
a lost packet, rather than the outcome of the attack.

• Restricted to simple attacks. Due to the lack of guidance in modifying request parameters, these approaches
struggle to execute complexmultistage attacks. For instance, many IoT device services require valid authorization
tokens, which can only be obtained by calling the appropriate login API before accessing other target APIs.
Additionally, these target APIs often require supplementary data that must be retrieved from another API
exposed by the IoT device beforehand.

• Inability to pinpoint the location of the vulnerability. The absence of detailed firmware information
prevents these approaches from effectively locating the vulnerable code within the firmware of the IoT device.
This limitation requires users to manually inspect the firmware code to identify the vulnerability, relying on
requests that successfully conducted the attack.

• Lack of coverage of potentially vulnerable services. A complete black-box approach prevents these
solutions from focusing on and exploiting potentially vulnerable services that are accidentally missed when
performing black-box attacks.

To address these limitations, we have developed MITHRAS. This tool uses a combination of static and dynamic
analysis to exploit Remote Code Execution (RCE) vulnerabilities inside the php code of the IoT’s firmware device
through its companion app. MITHRAS performs static instrumentation on the firmware code to insert a logging code
that supports the dynamic analysis phase. It also analyzes the companion app’s compiled code to identify the methods
responsible for communication between the smartphone and the IoT device.

During the dynamic analysis phase, MITHRAS leverages multi-agent Deep Reinforcement Learning (Deep RL)
techniques. Although existing black-box fuzzing techniques are efficient in quickly determining actions to perform,
they are not well suited for complex problems, like multistage attacks, that require a sequence of actions to be solved.
Additionally, black-box fuzzers do not learn from past experiences to select future actions, making them less adaptable
to complex scenarios. These limitations are addressed by Deep RL, which learns a policy over time to tackle complex
problems by mimicking human behavior.

Penetration Testing of Embedded Systems 3

MITHRAS introduces a novel multi-agent Deep RL paradigm for efficient interaction with Mobile-IoT environments.
It employs two specialized agents: the Layout agent, which explores the companion app, and the Payload agent,
which crafts malicious payloads to exploit IoT device vulnerabilities. Unlike conventional architectures assuming agent
independence, MITHRAS adopts a hierarchical, sequential structure where the Layout Agent’s actions guide the Payload
Agent. The Payload Agent’s observation space depends on the app state achieved by the Layout Agent. With separate
Q-functions and inter-agent coordination, this paradigm enables a unique master-slave relationship optimized for the
complexities of Mobile-IoT ecosystems.

Using these methods, MITHRAS can effectively exploit vulnerabilities in IoT devices, overcoming the limitations
of previous approaches. MITHRAS is the first solution that uses Deep RL techniques to reach the vulnerable code
inside the IoT device’s firmware, crafting and refining the malicious payloads based on the feedback received from
the instrumented IoT device’s firmware. This approach allows MITHRAS to effectively identify and exploit security
vulnerabilities, making it different from previous methods that lacked precise feedback mechanisms and comprehensive
interaction with the firmware.

In summary, we make the following contributions:

• We propose a static analysis approach to instrument the firmware of an IoT device, injecting the required code
to get runtime feedback;

• We propose a novel multi-agent Deep RL architecture that rely on a master-slave relationship between two
different agents that work on the same environment;

• We implemented the MITHRAS methodology in a tool available at: https://github.com/X3no21/Mithras;
• We tested MITHRAS on 10 firmware-companion app pairs to evaluate its efficacy in exploiting vulnerabilities.

2 RELATEDWORK

IoT devices present many vulnerabilities because their code often remains legacy and is neither maintained nor updated.
Over the years, several research works have emerged that focus on discovering vulnerabilities in the firmware of
IoT devices without executing them, such as [6], [15], [44], and [39]. However, these solutions face the challenge of
identifying vulnerabilities that can result in false positives, leading to unreliable analyzes. Moreover, these tools cannot
confirm whether a vulnerability can be effectively exploited.

To address the limitations of static analysis, some solutions use dynamic analysis techniques to discover and exploit
vulnerabilities in the IoT device’s firmware. For example, Feng et al. [21] proposed a method that triggers the exposed
APIs of an IoT device to infer the structure of request messages and employs fuzzing techniques to mutate the values
within these requests. This approach operates in a black-box manner, meaning it does not know the IoT device’s code
configuration. Consequently, it faces challenges when mutating values in custom encoding requests. Zheng et al.[49]
proposed a solution to improve the performance of whole-system emulation for IoT device programs by combining
system and user emulation. They use the Afl fuzzer[22] to mutate system call parameters of the emulated binaries.
However, this approach requires extensive environment customization and focuses solely on system call parameters,
not vulnerabilities within the executed code.

Some solutions exploit gray-box analyses, making the vulnerability discovery process more accurate and precise
than the latter research works. Du et al. [19] introduced AflIot, which instruments binaries of Linux-based IoT devices
to run in an emulated environment without specific hardware peripherals. The instrumentation inserts code to provide
feedback for the Afl fuzzer, aiming to discover inputs that cause crashes. However, AflIot targets one binary at a time,

https://github.com/X3no21/Mithras

4 Pagano et al.

using shared memory between the instrumented program and the fuzzer. Consequently, the fuzzer can handle only
one program per session and must be installed on the same system as the program. Ronin [41] uses gray-box analysis
techniques to discover vulnerabilities in Inter-Component Communication (ICC) within a mobile app. Using Deep RL
techniques, it can automatically navigate the app’s GUI and maliciously mutate the parameters of Intent [17] objects to
exploit vulnerabilities at runtime. Ronin also statically instruments the app’s code to inject logic that collects real-time
app coverage. This allows it to calculate the distance to vulnerabilities at each step and update its internal policy
accordingly. Regarding the use of Deep RL techniques for efficient navigation of the code of a companion app, Romdhana
et al. [40] developed ARES. This tool uses Deep RL to maximize code coverage by mimicking user interactions with the
mobile app. ARES also aims to execute sequences of actions designed to crash the app under test.

Some solutions, like IoTFuzzer [5], use companion mobile apps to mutate parameters and generate network requests
to crash IoT device programs. However, IoTFuzzer cannot pinpoint specific vulnerabilities in the device code. It identifies
crashes based on network response codes or the absence of responses, which can lead to false positives. For example, a
bad response code might indicate a malformed request rather than a crash, and the lack of a response could be due to
network issues rather than a crash. This reliance on external responses also limits the ability to inspect the device’s
internal state to confirm if a vulnerability was triggered.

Redini et al. [39] proposed Diane, which improves method selection for mutation compared to IoTFuzzer. Diane
identifies methods in the companion app that contribute to the final request and mutates their parameters. Despite this
improvement, Diane still faces the same limitations as IoTFuzzer.

To address the limitations of current state-of-the-art solutions, MITHRAS leverages Deep RL techniques to train
agents that automatically exploit real-world vulnerabilities in IoT devices through their companion apps. MITHRAS
introduces a novel multi-agent paradigm employing two agents in a master-slave relationship, where one agent’s
execution depends on and is directed by the other. This approach challenges the traditional independence of agents in
multi-agent paradigms. Oroojlooy et al. [34] classify multi-agent paradigms into five categories: Independent Q-Learning,
Fully Observable Critics, Value Function Factorization, Consensus, and Learn to Communicate. In the Independent
Q-Learning model, agents learn separate Q-functions and receive distinct observations from the shared environment,
operating entirely independently—contrasting with MITHRAS, where agents are interdependent. In the Fully Observable
Critic paradigm, agents maintain separate Q-functions and action spaces but share global observations to address
non-stationarity, differing from MITHRAS, where agents rely on individual observations without sharing them. The
Consensus paradigm allows agents to communicate within sub-groups and reach agreement on solutions to update a
shared policy, which contrasts with MITHRAS, as its agents do not achieve consensus but instead follow a hierarchical
dependency. The Value Function Factorization paradigm combines agents’ Q-functions into a shared Q-function, enabling
agents to optimize local and global rewards. In contrast, MITHRAS’s agents learn separate Q-functions with conditional
dependencies. Finally, the Learn to Communicate paradigm enables agents to dynamically determine what information
to share and with whom, while MITHRAS’s agents do not explicitly learn to communicate but interact through a
hierarchical relationship where one agent’s decisions directly influence the other.

3 BACKGROUND

3.1 Deep Reinforcement Learning (Deep RL)

The aim of Reinforcement Learning (RL) is to train an agent that interacts with an environment by executing actions to
achieve a specific goal. The agent is guided towards its goal through feedback called rewards, which are consequences

Penetration Testing of Embedded Systems 5

of its actions. At each time step 𝑡 , the agent receives an observation 𝑥𝑡 , a partial or complete view of the current
environment state 𝑠𝑡 , and selects an action 𝑎𝑡 . After executing the action 𝑎𝑡 , the environment transitions from state 𝑠𝑡
to 𝑠𝑡+1. The agent receives a reward 𝑅(𝑥𝑡 , 𝑎𝑡 , 𝑥𝑡+1), rewarding or penalizing the action taken based on its outcome. The
agent’s behavior is entirely defined by a policy function 𝜋 , which determines which actions to take in the current state
𝑠𝑡 . A policy can be:

• Deterministic: 𝜋 (𝑠𝑡), meaning that in state 𝑠𝑡 , the agent will always choose a specific action 𝑎𝑡 .
• Stochastic: 𝜋 (𝑎𝑡 |𝑠𝑡), meaning that in state 𝑠𝑡 , the agent selects action 𝑎𝑡 with a certain probability. In this case,

there is no direct mapping between a specific state 𝑠𝑡 and a unique action 𝑎𝑡 .

The environment is typically modeled as a Markov Decision Process (MDP), which is represented by the following
5-tuple: ⟨𝑆,𝐴, 𝑅, 𝑃, 𝜌0⟩, where:

• 𝑆 is the set of all possible states.
• 𝐴 is the set of all possible actions.
• 𝑅 : 𝑆 ×𝐴→ R is the reward function, where 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1).
• 𝑃 : 𝑆×𝐴→ 𝑃 (𝑠) is the transition probability function, where 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) defines the probability of transitioning

from state 𝑠𝑡 to state 𝑠𝑡+1 after taking action 𝑎𝑡 .
• 𝜌0 (𝑠) is the distribution of the initial state of the environment.

Deep Neural Networks (DNNs) can represent the agent’s policies. DNNs are powerful function approximators
capable of representing complex functions, such as the policy functions of agents operating in environments with high-
dimensional state or action spaces. When DNNs represent policy functions in RL, the field is called Deep Reinforcement
Learning (Deep RL). We describe two of the most well-known and widely used Deep RL algorithms in the following.

3.1.1 Soft Actor-Critic (SAC). Soft Actor-Critic [29] (SAC) is an off-policy Deep RL algorithm that has gained attention
for its balance between exploration and exploitation. SAC achieves this balance by maximizing a trade-off between
the expected reward and the entropy of the policy, where entropy represents the randomness in the agent’s action
selection. This approach encourages the agent to explore a wide range of actions, preventing it from becoming too
deterministic and helping it discover better strategies.

The SAC algorithm involves learning two key elements: the policy (actor) and the value function (critic). The policy
determines the probability distribution over actions for each state, while the value function estimates the expected
return. SAC updates the policy by minimizing a loss function that includes both the expected return and the entropy
term, leading to more exploratory and robust policies. This makes SAC particularly effective in environments with
continuous action spaces, where exploration is crucial for discovering optimal strategies.

3.1.2 Trust Region Policy Optimization (TRPO). Trust Region Policy Optimization [42] (TRPO) is another prominent
Deep RL algorithm, known for its stability and efficiency in policy updates. Unlike some other Deep RL algorithms that
can suffer from instability during learning, TRPO uses a trust region approach to limit the size of policy updates. This
constraint ensures that the new policy does not deviate too far from the previous one, which helps maintain stability
and prevent the agent from making drastic changes that could lead to suboptimal performance.

TRPO optimizes the policy by maximizing a surrogate objective function while keeping the policy updates within
a predefined trust region. This is typically achieved through conjugate gradient methods and line search techniques,
which allow TRPO to find the optimal policy update while respecting the trust region constraint. The result is a more

6 Pagano et al.

stable learning process, making TRPO particularly useful in environments with high-dimensional or continuous action
spaces where significant policy changes can be detrimental.

3.1.3 Algorithm’s choices motivations. This research focused on Deep RL algorithms that ensure consistent and
controlled policy updates, avoiding shifts that could lead to divergence or suboptimal performance. This is crucial due
to the complexity of the environment, which involves both a companion app on the smartphone and an IoT device.
Given these constraints, we prioritized highly stable algorithms and excluded Q-Learning [47] from consideration.
We selected SAC for its diverse actions, enhancing exploration and coverage, and TRPO for reusing similar actions to
maximize the reachability of promising paths. SAC, with its off-policy approach, outperforms A2C [33], DDPG [45],
and TD3 [24] in terms of stability and exploration. As demonstrated by Romdhana et al. [40], SAC achieves higher
coverage than DDPG due to its entropy regularization, which prevents premature convergence. TRPO, compared to
PPO [43], offers stricter policy control, making it more stable in sensitive environments. TRPO also ensures more stable
on-policy updates than TD3, which may suffer from instability due to its off-policy nature.

3.2 Remote Code Execution Vulnerabilities

Remote Code Execution (RCE) vulnerabilities are among software systems’ most critical security issues, allowing
attackers to execute arbitrary code on a remote machine. Their importance is remarked by their classification under [13],
which highlights the inherent risk associated with the execution of unintended commands or scripts. RCE vulnerabilities
typically arise due to several potential issues in software development, including:

• Improper Input Validation and Sanitization: One of the primary causes of RCE is the inadequate validation
or sanitization of user inputs. When user inputs are directly used to construct system commands or scripts
without rigorous validation, they can be exploited to inject and execute malicious code.
• Deserialization of Untrusted Data: Deserialization flaws occur when an application processes serialized data

from untrusted sources without proper validation, potentially leading to executing arbitrary code embedded in
the serialized data.

• Insecure Software Configuration: Misconfigurations, such as overly permissive execution environments
or improper access controls, can expose an application to RCE vulnerabilities by allowing untrusted code
execution.

1<?php

2if (isset($_GET['cmd'])) {

3$command = $_GET['cmd'];

4system($command);

5}

6?>

Listing 1. Example of an RCE vulnerability inside a PHP code snippet

Listing 1 shows an example of a PHP script that directly passes user input from the cmd parameter of a GET request
to the system() function. The input to the system() function is not correctly sanitized, leading to the execution of
arbitrary commands on the system without any control.

4 METHODOLOGY

This section describes MITHRAS, our approach to automatic penetration testing of IoT devices based on Deep RL. The
MITHRAS’s approach is composed of two phases: i) an analysis phase on the mobile companion app associated with

Penetration Testing of Embedded Systems 7

the IoT device and the static instrumentation of the IoT device’s firmware; ii) a dynamic exploration phase based on
Deep RL techniques to execute penetration tests on the IoT device through its companion app.

Fig. 1. Setup Phase

4.1 Setup Phase

Figure 1 provides an overview of MITHRAS’s setup phase, which is divided into two parts: (i) static analysis of the IoT
device’s companion app to identify methods that handle communication between the smartphone and the IoT device,
and (ii) static analysis of the IoT device’s firmware to search for RCE vulnerabilities and instrument the firmware with
code that generates runtime feedback from the actions taken by the Deep RL agent.

4.1.1 Companion App Analysis. The Control-Flow Graph Extractor module begins by extracting the app’s
.smali code from its compiled artifact and constructing a comprehensive control flow graph (Step 1). Once the
graph is established, the Sink Methods Searchermodule identifies all methods responsible for handling network
requests to the IoT device, referred to as candidate sinkmethods (Step 2). These sink methods manage to send requests
to the IoT device and process its responses. Next, the Methods Static Reachability Analyzer module
checks whether the identified candidate sink methods are reachable from the app’s layout classes by statically analyzing
all possible paths originating from the layout classes’ methods (Step 3). Any unreachable methods are excluded from the
list, and the remaining reachable methods are stored in a buffer (Step 4). The Methods Dynamic Reachability

Analyzer then filters the methods further, distinguishing those that initiate network requests to the IoT device based
on real-time network monitoring during app execution on a smartphone (Step 5). This analysis is guided by the Layout
Agent, described in Section 4.2, which interacts with the app at runtime to trigger the execution of candidate sink
methods. If a network request to the IoT device is detected following the execution of a candidate sink method, the

8 Pagano et al.

method is confirmed as valid. After completing both static and dynamic reachability analyses, the confirmed sink
methods are stored in a buffer (Step 6) and passed to the next dynamic analysis phase.

4.1.2 IoT Firmware Static Instrumentation. The Root FS Extractor module starts by unpacking the firmware’s
.bin file to extract the embedded root file system, which contains the software executed by the firmware (Step 1). After
extracting the root file system, the Vulnerability Searchmodule scans it for vulnerabilities, focusing specifically
on remote code execution (RCE) issues within .php files (Step 3). This scanning process uses existing tools designed for
detecting such vulnerabilities. If any RCE vulnerabilities are found, the Php AST Static Instrumentermodule
traverses each .php file to instrument the code (Step 4). This module modifies the original code by inserting logging
mechanisms that generate feedback for the Deep RL agent during the further dynamic analysis phase. Specifically, it
logs every function or method call made when a PHP script is executed and the output of any commands issued through
the vulnerable execution functions identified earlier. This information is transmitted via socket to the Deep RL agent.
Once the instrumentation code is generated and inserted, the module updates the .php files with these modifications.
Finally, the Instrumented FW Packer module repacks the modified file system, along with the original firmware
files, into a new .bin file (Step 5), producing the final instrumented firmware package.

4.2 Dynamic Analysis Phase

Figure 2 shows an overview of MITHRAS’s dynamic analysis phase. This phase is characterized by two Deep RL agents
interacting with the companion app and the IoT device. In the following, we will discuss each methodology step and
detail the two Deep RL agents.

Fig. 2. Dynamic Analysis Phase

4.2.1 Overview. The Layout Agent begins by setting its state based on the current state of the companion app on
the device (Step 1). Using this state, the Layout Agent selects an action from its action space and executes it on
the device where the companion app is installed (Step 2). If the app’s execution triggers a sink method, the Layout

Penetration Testing of Embedded Systems 9

Agent pauses, and the Payload Agent takes over. The Payload Agent then selects an action to execute based
on the triggered sink method on the companion app (Step 3). This action involves modifying an original parameter of
the request payload intended for the IoT device, potentially introducing a malicious modification. After performing
the parameter modification, the Payload Agent injects the new modified parameter’s value into the companion
app’s memory and resumes the app’s execution (Step 4). The companion app then executes the modified payload to
the IoT device (Step 5). The IoT device, in turn, sends the execution trace—detailing the methods and functions called
within the .php files and the output of the vulnerable execution functions—to the Payload Agent (Step 6). The
Payload Agent updates its state based on this execution trace and calculates the reward, which is then passed to
the Layout Agent. The Layout Agent computes its internal reward based on the successful triggering of a sink
method within the companion app and the impact of the malicious payload’s execution (Step 7). The final reward 𝑅𝑙 of
the Layout Agent is calculated as follows:

𝑅𝑙 = 𝑟𝑙 + 𝛼 · 𝑟𝑝
Where 𝑟𝑙 represents the reward obtained by the Layout Agent based on its interaction with the companion app’s
GUI, 𝑟𝑝 represents the reward obtained by the Payload Agent after executing the attack; and 𝛼 is a discount factor
applied to 𝑟𝑝 (in our implementation, set to 0.4).

4.3 Layout Agent

To apply RL to the challenge of reaching sink methods within the mobile companion app, we need to translate
the problem into the standard mathematical framework of RL: a Markov Decision Process (MDP), defined by the
5-tuple ⟨𝑆,𝐴, 𝑅, 𝑃, 𝜌0⟩. Furthermore, the testing problem must be structured as an RL task, broken down into multiple
finite-length episodes.

4.3.1 State Representation. The state representation of the companion app is entirely based on its GUI. The state 𝑠𝑡 ∈ 𝑆
is expressed as a composite state (𝑎0, . . . , 𝑎𝑛,𝑤0, . . . ,𝑤𝑚). The first component, (𝑎0, . . . , 𝑎𝑛), uses a one-hot encoding
to indicate the current activity, where 𝑎𝑖 is set to 1 only if the currently active activity is the 𝑖th one, and 0 for all other
activities. The second component,𝑤 𝑗 is set to 1 if the 𝑗th widget is available in the current activity; otherwise, it is set
to 0.

4.3.2 Action Space. User interaction events in the companion app are mapped to the action set𝐴 of the MDP. MITHRAS
identifies executable events by analyzing dumped widgets’ attributes (clickable, long-clickable, scrollable). Each action
𝑎 has three parts: the first identifies the target widget or system action; the second provides a string input (using an
index from a predefined dictionary), and the third is context-dependent, determining either the action type (click or
long-click) or the scrolling direction for scrollable widgets.

10 Pagano et al.

4.3.3 Reward Function. The RL algorithm used by MITHRAS receives a reward 𝑟𝑙 every time it executes an action. We
define the following reward function:

𝑟𝑙 =



Γ1 if 𝑑𝑡 (𝑠∗) = 0 ∧ 𝑠∗ ∉ PrevReachedSinks,

Γ2 if 𝑑𝑡 (𝑠∗) = 0 ∧ 𝑠∗ ∈ PrevReachedSinks,

Γ3 if 𝑑𝑡 (𝑠∗) − 𝑑𝑡−1 (𝑠∗) ≤ 0

−Γ3 𝑑𝑡 (𝑠∗) − 𝑑𝑡−1 (𝑠∗) > 0,

−Γ4 companion app crashes

where 𝑑𝑡 (𝑠∗) indicates the distance to the closest sink 𝑠∗ achieved at time 𝑡 (resp. 𝑡 − 1), with Γ1 > Γ4 > Γ2 > Γ3 (in our
implementation Γ1 = 100, Γ2 = 70, Γ3 = 50, Γ4 = 80)

At time 𝑡 , the agent receives the maximum positive reward (Γ1) if it reaches a sink function identified during the static
analysis phase. It gets a smaller positive reward (Γ2) if it revisits an already visited sink. When the agent executes an
action that brings it closer to a sink compared to the previous time step, it is awarded a positive reward (Γ3). Conversely,
if the executed action increases the distance to the sink, the agent incurs a negative reward (−Γ3). The agent also receives
the maximum negative reward (−Γ4) if the executed action causes the companion app to crash.

4.4 Payload Agent

4.4.1 State Representation. The state representation of the IoT device is based entirely on the software running on the
device. The state 𝑠𝑡 ∈ 𝑆 is represented as (𝑝0, . . . , 𝑝𝑛), a bit vector encoding to indicate the .php files traversed during
the last execution. Expressly, 𝑝𝑖 is set to 1 if the corresponding .php file was executed and 0 if it was not.

4.4.2 Action Space. Sink method parameter modification operations are mapped to the action set 𝐴 of the MDP.
MITHRAS extracts the sink method’s parameter values from the last sink call and performs actions on them. Each action
𝑎 consists of four elements: the first element identifies the sink parameter to be modified; the second element specifies
the modification to be performed, which may involve adding a string (using an index from a predefined dictionary)
as a prefix or suffix to the current parameter value or replacing the parameter value with a command that directly
executes code on the command line (e.g., $(id>rce), to execute the id shell command and redirect its output into a
file named rce); the third element specifies the index of a string from a dictionary to be used as a prefix or suffix for
the current sink parameter’s value, while the fourth element defines an additional modification to apply to the altered
payload, such as encoding special characters. This further modification is necessary because IoT devices might escape
or filter special characters, such as spaces, and encoding these characters in a format acceptable to the IoT device can
enhance the acceptance of the modified payload as valid.

4.4.3 Reward Function. The RL algorithm used by MITHRAS receives a reward 𝑟𝑝 every time it executes an action. We
define the following reward function:

𝑟𝑝 =



Γ1 if vulnerability on IoT device is reached and successfully exploited,

−Γ3 if the timeout occurs or vulnerability on IoT device is reached and not exploited

Γ2 − Γ3 if 𝑑𝑡 (𝑣∗) − 𝑑𝑡−1 (𝑣∗) ≤ 0

−Γ2 − Γ3 𝑑𝑡 (𝑣∗) − 𝑑𝑡−1 (𝑣∗) > 0,

Penetration Testing of Embedded Systems 11

where 𝑑𝑡 (𝑣∗) indicates the distance to the closest vulnerability 𝑣∗ achieved at time 𝑡 (resp. 𝑡 − 1), with Γ1 > Γ3 > Γ2 (in
our implementation Γ1 = 100, Γ2 = 50, Γ3 = 40) At time 𝑡 , the agent receives the maximum positive reward Γ1 if the sink
method’s parameter modification successfully exploits a vulnerability within the IoT device and a negative reward −Γ3
if it fails to do so. When the agent executes an action closer to exploiting a vulnerability than the previous step, it is
awarded a positive reward Γ2 − Γ3. Conversely, if the executed action increases the distance to a vulnerability without
reaching it, the agent incurs a negative reward −Γ2 − Γ3.

4.5 Multi Agent

Figure 3 illustrates the interaction between the Layout and Payload agents in our multi-agent Deep RL system. Each
agent learns its Q-function, enabling independent decision-making. Instead of interacting with the environment in
parallel, the agents operate sequentially. Specifically, the Payload agent’s observations partially depend on the sink
function executed on the IoT device and its parameter values. First, the Layout agent interacts with the companion app
to reach a sink function. If the mobile app’s execution reaches a sink function, it triggers the Payload agent’s execution.
The observation the Payload agent receives is the combination of the IoT device’s state and the last sink function
triggered in the companion app alongside its parameter values. This last observation depends on the Layout agent’s
executed action.

Fig. 3. Deep RL Agent interaction

Specifically, the interactions between the two agents can be described as follows: First, the Layout agent receives
the observation 𝑂𝐿 from the mobile companion app on the smartphone (Step 1). Based on 𝑂𝐿 , it selects an action 𝐴𝐿

to perform on the smartphone’s layout (Step 2). After executing the action 𝐴𝐿 on the smartphone, the Layout agent
retrieves the observation 𝑂𝐿𝐴 from the smartphone (Step 3). This observation contains the last sink method invoked
and its parameter values, which are to be maliciously mutated by the Payload agent. Next, the Payload agent receives
the observation 𝑂𝐿𝐴 from the Layout agent (Step 4). It also reads the execution state of the previously executed action,
𝑂IoT, from the IoT device (Step 5), combining these observations to produce the complete information needed to select
the following action. The Payload agent then chooses an action, 𝐴IoT, to modify the parameter values received from

12 Pagano et al.

the Layout agent and applies these modifications to the mobile companion app (Step 6). After executing the action
𝐴IoT, the Payload agent retrieves the execution state of the IoT device, 𝑂𝑃𝐴 (Step 7). Based on this state, it computes its
reward, 𝑅𝑃 , and sends it to the Layout agent (Step 8). Meanwhile, the Layout agent computes its reward, 𝑅𝐴 , based on
the reachability of a sink method within the companion app (Step 9). The Layout agent combines its reward, 𝑅𝐴 , with
the reward 𝑅𝑃 received from the Payload agent, producing the final reward, 𝑅𝐴+𝑃 . This final reward is used to update
the Layout agent’s internal policy.

4.6 Pseudocode

The pseudocode in Listing 1 outlines the core operations of the MITHRAS’s dynamic analysis. Initially, the Layout
Agent connects to the smartphone to inject the payload manager binary (Line 1). This binary enables commu-
nication with the companion app. The agent configures the payload manager using the agent_file configuration
file, which specifies the methods in the companion app that need to be hooked at run-time, along with the code to
be executed before the original method execution. The Layout Agent executes its logic for each episode, with the
number of episodes provided as an input parameter (lines 3-30). At the start of each episode, the Layout Agent

resets the state of the companion app and the IoT device (lines 3-4). During each step, the Layout Agent retrieves
the current state of the companion app (Line 6), selects and performs actions based on the state and its internal policy
(Lines 7-8), and waits until either a sink method is triggered or an internal timeout occurs (Lines 10-12). If no sink
function is reached before the timeout, the Layout Agent computes a penalty in the reward function to reflect the
failure to reach a sink function (lines 13-17). However, if a sink function is hit during the app’s execution, the Layout
Agent wakes up the Payload Agent and sends it the sink function parameter values (line 18). Upon activation, the
Payload Agent retrieves the current state of the IoT device (line 19), then mutates the values of the parameter of the
sink function based on both the state of the device and its internal policy (lines 20-21). After performing this mutation,
the Payload Agent sends the modified parameter values back to the payload manager running on the smartphone
(line 23) and waits until its internal timeout expires (Lines 24-26). If the Payload Agent’s internal timeout expires
without receiving feedback, it calculates a negative reward, indicating that the exploit was unsuccessful, and updates its
internal policy accordingly (lines 27-31). However, suppose a response from the IoT device is received. In that case,
the Payload Agent retrieves the device’s execution trace (line 32), computes the reward based on this trace, and
updates its internal policy (lines 33-34). Finally, the Payload Agent sends its computed reward back to the Layout
Agent, which also computes its reward and updates its policy accordingly (lines 35-37).

Penetration Testing of Embedded Systems 13

Algorithm 1 RL Agents
Input: 𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑜𝑛_𝑎𝑝𝑝_𝑎𝑝𝑘 , 𝑑𝑒𝑣𝑖𝑐𝑒_𝑓 𝑖𝑟𝑚𝑤𝑎𝑟𝑒 , 𝑎𝑔𝑒𝑛𝑡_𝑓 𝑖𝑙𝑒 , 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 , 𝑠𝑡𝑒𝑝𝑠 , 𝑠𝑖𝑛𝑘_𝑚𝑒𝑡ℎ𝑜𝑑𝑠

Output:
1: 𝑝𝑎𝑦𝑙𝑜𝑎𝑑_𝑚𝑎𝑛𝑎𝑔𝑒𝑟 ← loadPayloadManager(𝑎𝑔𝑒𝑛𝑡_𝑓 𝑖𝑙𝑒)
2: for episodes do
3: companion_app.reset()
4: iot_device.reset()
5: for steps do
6: 𝑎𝑝𝑝_𝑠𝑡𝑎𝑡𝑒 ← companion_app.getState()
7: 𝑤_𝑖𝑑𝑥 , 𝑖_𝑖𝑑𝑥 ,𝑜_𝑖𝑑𝑥← agent_layout.getAction(𝑎𝑝𝑝_𝑠𝑡𝑎𝑡𝑒)
8: 𝑎𝑔𝑒𝑛𝑡_𝑙𝑎𝑦𝑜𝑢𝑡 .performAction(𝑤_𝑖𝑑𝑥 , 𝑖_𝑖𝑑𝑥 , 𝑜_𝑖𝑑𝑥)
9:
10: while no Timeout do
11: wait for a send message from the companion app instrumenter
12: end while
13: if Timeout then
14: 𝑟𝑒𝑤𝑎𝑟𝑑 ← agent_layout.computeReward()
15: agent_layout.updatePolicy(𝑟𝑒𝑤𝑎𝑟𝑑)
16: continue
17: end if
18: 𝑎𝑔𝑒𝑛𝑡_𝑙𝑎𝑦𝑜𝑢𝑡 .sendSinkParameterValuesToPayloadAgent(𝑠𝑖𝑛𝑘_𝑚𝑒𝑡ℎ𝑜𝑑_ℎ𝑖𝑡)
19: 𝑖𝑜𝑡_𝑑𝑒𝑣𝑖𝑐𝑒_𝑠𝑡𝑎𝑡𝑒 ← iot_device.getState()
20: 𝑝𝑎𝑟𝑎𝑚_𝑖𝑑𝑥, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑖𝑑𝑥, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑖𝑑𝑥, 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑖𝑑𝑥 ← agent_payload.getAction(𝑖𝑜𝑡_𝑑𝑒𝑣𝑖𝑐𝑒_𝑠𝑡𝑎𝑡𝑒)
21: 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 ← 𝑎𝑔𝑒𝑛𝑡_𝑝𝑎𝑦𝑙𝑜𝑎𝑑 .performAction(𝑠𝑒𝑒𝑑𝑄𝑢𝑒𝑢𝑒 , 𝑝𝑎𝑟𝑎𝑚_𝑖𝑑𝑥 , 𝑠𝑒𝑒𝑑_𝑖𝑑𝑥 , 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑖𝑑𝑥 ,

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑖𝑑𝑥)
22:
23: send 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 to the 𝑝𝑎𝑦𝑙𝑜𝑎𝑑_𝑚𝑎𝑛𝑎𝑔𝑒𝑟

24: while no Timeout do
25: wait for the reply from the IoT device
26: end while
27: if Timeout then
28: 𝑟𝑒𝑤𝑎𝑟𝑑 ← agent_payload.computeReward()
29: agent_payload.updatePolicy(𝑟𝑒𝑤𝑎𝑟𝑑)
30: continue
31: end if
32: 𝑖𝑜𝑡_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑒 ← getIoTProgramExecutionTrace()
33: 𝑟𝑒𝑤𝑎𝑟𝑑_𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ← agent_payload.computeReward(𝑖𝑜𝑡_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑒)
34: agent_payload.updatePolicy(𝑟𝑒𝑤𝑎𝑟𝑑_𝑝𝑎𝑦𝑙𝑜𝑎𝑑)
35: 𝑟𝑒𝑤𝑎𝑟𝑑_𝑙𝑎𝑦𝑜𝑢𝑡 ← agent_layout.computeReward(𝑠𝑖𝑛𝑘_𝑚𝑒𝑡ℎ𝑜𝑑𝑠)
36: 𝑟𝑒𝑤𝑎𝑟𝑑 ← 𝑟𝑒𝑤𝑎𝑟𝑑_𝑙𝑎𝑦𝑜𝑢𝑡 + 𝛼 ∗ 𝑟𝑒𝑤𝑎𝑟𝑑_𝑝𝑎𝑦𝑙𝑜𝑎𝑑
37: agent_layout.updatePolicy(𝑟𝑒𝑤𝑎𝑟𝑑)
38: end for
39: end for

4.7 Implementation

The MITHRAS methodology is implemented within a framework that enables users to fully emulate a functional
Mobile-IoT environment and interact with it through a multi-agent Deep RL system. MITHRAS utilizes the FirmAE
framework [30] to emulate IoT devices from their firmware files. For the smartphone emulator, MITHRAS employs
the Android emulation framework [16] to set up a fully functional emulator, allowing the installation of companion
apps to interact with the emulated IoT devices. To implement the Layout and Payload agents, MITHRAS relies on
Stable-Baselines3 [27], a robust library for reinforcement learning. For the vulnerability identification task, we leveraged
Emba [25]. This tool performs various static security analyses in firmware to identify vulnerabilities, such as RCE. Emba
also uses a dataset of public CVEs to check for known and certified vulnerabilities in the analyzed firmware. Based on
the results of the static analysis, MITHRAS modifies the IoT firmware’s php files using the Php-Parser library [26]
to insert the logging logic. The logging code captures data at invoked sink functions, allowing us to assess which
mutated inputs successfully exploited which RCE vulnerabilities. Interaction with the companion app’s user interface

14 Pagano et al.

to reach sink functions is supported by the Appium library [2]. The Frida library [23] is used to monitor the execution
of the companion app and log any triggered sink functions. When a sink function is triggered, MITHRAS captures its
parameter values and forwards them to the Layout agent as a JSON object.

5 EVALUATION

We seek to address five research questions, divided into two distinct studies, respectively, on the sink reachability of the
companion app (Sections 5.1 and 5.2) and on the vulnerability exploitation of the IoT device (Section 5.3 and 5.4).

5.1 Companion App’s Sink Reachability

RQ1 [Sink Reachability]:Which sinks identified by static analysis are reached by the Layout Agent?

RQ2 [Efficiency]: How does the number of sinks reached by the Layout Agent grow across episodes?

RQ3 [RL algorithm]: Which RL algorithm between SAC and TRPO performs better when implementing the Layout

Agent? How does the sink coverage curve compare to that of a black-box fuzzer algorithm?

This study investigates the ability of a Deep RL-based agent to automatically interact with mobile companion apps
to reach sink functions identified during static analysis. We focus on coverage of unique sinks reached and the diversity
of inputs that enable the agent to reach them. The goal is to determine whether a Deep RL algorithm results in more
sink functions being reached within a predefined period than the black-box fuzzer algorithm. A black-box fuzzer is an
algorithm that operates within the same action space as Deep RL algorithms but generates the action vector randomly
at each step, without relying on a learned policy. We selected 10 pairs of Android companion apps and corresponding
IoT device programs for the study, specifically focusing on apps interacting with smartwatch devices (see Table 1).
To address RQ1, we used the Frida library [23] for dynamic instrumentation, collecting data on which sink functions
were invoked during execution to compute coverage. For RQ2 and RQ3, we compared two Deep RL algorithms, SAC
and TRPO, against the black-box fuzzer to determine which algorithm is more effective in reaching sink functions and
generating diverse inputs.

Id App Version

App 1 com.habitrpg.android.habitica 4.2.2
App 2 com.radioplayer.mobile 7.4.1
App 3 de.komoot.android 2023.26.7
App 4 com.funnmedia.waterminder 5.1.5
App 5 com.pallo.passiontimerscoped 705.1.4
App 6 org.iggymedia.periodtracker 1.096
App 7 com.google.android.wearable.app 2.63.0.532400257
App 8 au.com.auspost.android 8.9.9-4790
App 9 com.calm.android 6.26.1
App 10 com.outdooractive.Outdooractive 3.13.4

Table 1. Companion app used in the testing campaign

We conducted the experimental campaign over 10 episodes for each mobile companion app, running each episode
for 20 minutes using Deep RL and black-box fuzzer algorithms. We used the Area Under the Curve (AUC) metric to

Penetration Testing of Embedded Systems 15

evaluate efficiency, considering the sink coverage over a time curve. To account for the algorithms’ non-determinism,
each experiment was repeated 10 times. We applied the Shapiro-Wilk test to assess whether the distributions were
Gaussian. If the distributions were Gaussian, we used the ANOVA test and Cohen’s effect size, classified into Negligible
(N), Small (S), Medium (M) and Large (L) according to the standard thresholds 0.2, 0.5, 0.8. Otherwise, we applied the
Wilcoxon non-parametric test with Vargha-Delaney effect size, whose standard thresholds (applied to 2 · |eff_size − 0.5|)
are: 0.147, 0.33, 0.474.

5.2 Companion App’s Sink Reachability Results

Figure 4’s right-hand diagram shows the companion apps sink function coverage per algorithm, averaged across
repetitions for each app. SAC and TRPO consistently outperform the black-box fuzzer algorithm, except in App 3 and
App 10, where coverage converges to 100% with all three techniques. Deep RL algorithms are more effective in reaching
sink functions, covering over 80% in most cases.

Fig. 4. i) The mean cumulative number of unique sinks reached over the episodes is averaged over all apps. ii) The mean percentage
of sink functions reached across all apps is averaged over all repetitions.

Figure 4’s left-hand diagram shows the cumulative number of unique sink functions reached across episodes,
averaged over the selected companion apps. SAC reached the highest number of unique sink functions across episodes,
outperforming TRPO and the black-box fuzzer algorithm. In particular, SAC and TRPO exhibit a similar upward trend
in discovering unique sink functions over time, whereas the black-box fuzzer algorithm lags significantly behind.

Table 2 shows the average number of unique sink functions and AUC across episodes for SAC, TRPO, and the
black-box fuzzer algorithm. We calculated the mean number of unique sink functions episode by episode for each
app and algorithm, averaging the results between repetitions. To assess overall performance, we combined the results
averaged by episode and calculated the mean for each algorithm. We applied a one-way ANOVA test for unique sink
functions and calculated Cohen’s 𝑑 effect size, which was significant. For AUC, we used the paired Wilcoxon test and
paired Vargha-Delaney effect size. In App 7, SAC discovered 25.12 unique sink functions, outperforming TRPO (14.49)
and the black-box fuzzer algorithm (14.02), with a medium effect size (M). SAC also achieved a higher AUC (227.35)
compared to TRPO (130.75) and black-box fuzzer (125.75). Across all apps, SAC averaged 31.27 unique sink functions,
compared to TRPO’s 28.20 and the black-box fuzzer’s 20.99, with a large effect size (L). SAC also led in AUC (281.69 vs.
253.33 for TRPO and 188.81 for black-box fuzzer), with a large effect size (L).

Table 3 presents the average number of unique inputs that reach the sink functions and AUC across episodes for
SAC, TRPO, and the black-box fuzzer algorithm. We calculated the mean number of unique inputs episode by episode

16 Pagano et al.

App Average unique sinks
across episodes (SAC)

Average unique
sinks across
episodes
(TRPO)

Average
unique
sinks
across
episodes
(Fuzzer)

Mean AUC
across episodes
(SAC)

Mean AUC
across episodes
(TRPO)

Mean
AUC
across
episodes
(Fuzzer)

App 1 7.66 M(Fuzzer) 9.23 M(Fuzzer) 3.95 69.40 M(Fuzzer) 82.95 35.45
App 2 8.79 6.89 7.23 79.10 61.80 65.00
App 3 150.93 134.45 103.47 1355.70 1208.90 932.45
App 4 12.70 11.54 9.16 114.55 103.90 82.30
App 5 18.65 22.77 13.26 167.40 204.70 119.10
App 6 35.71 M(Fuzzer) 38.49 M(Fuzzer) 20.42 322.70 346.85 183.00
App 7 25.12 M(Fuzzer,TRPO) 14.49 14.02 227.35 130.75 125.75
App 8 5.19 L(Fuzzer) 6.01 L(Fuzzer) 2.03 47.15 54.25 18.40
App 9 5.36 M(Fuzzer) 6.12 M(Fuzzer) 2.53 48.20 54.90 22.70
App 10 42.61 31.98 33.80 385.40 284.30 303.90
Overall 31.27 L(Fuzzer) 28.20 L(Fuzzer) 20.99 281.69 L(Fuzzer) 253.33 L(Fuzzer) 188.81

Table 2. Mean number of unique sink functions and AUC across episodes for each algorithm. Effect sizes between the best-performing
algorithm (highlighted) and other ones are reported only when the p-value is statistically significant (S = Small; M = Medium; L =
Large)

for each app and algorithm, averaging the results across repetitions. We also combined the results across all apps
to calculate the mean for each algorithm. For unique inputs, we used a one-way ANOVA, and Cohen’s 𝑑 effect size
was significant, while for AUC, we applied the Wilcoxon test with paired Vargha-Delaney effect size. In App 7, SAC
generated 90.06 unique inputs, outperforming TRPO (36.36) and black-box fuzzer (64.64), with a medium effect size (M)
compared to TRPO. Similarly, SAC achieved a higher AUC (810.65) compared to TRPO (330.05) and the black-box fuzzer
(580.75), again with large effect sizes (L). Across all apps, SAC averaged 118.76 unique inputs, compared to TRPO’s
48.32 and the black-box fuzzer’s 87.22, with large effect sizes (L) confirmed by ANOVA. SAC also led in AUC (1069.22 vs
433.29 for TRPO and 785.96 for black-box fuzzer), showing a large effect size (L).

App Average sinks reached
with unique inputs across
episodes (SAC)

Average
sinks
reached
with
unique
inputs
across
episodes
(TRPO)

Average sinks
reached with
unique inputs
across episodes
(Fuzzer)

Mean AUC across
episodes (SAC)

Mean
AUC
across
episodes
(TRPO)

Mean AUC across
episodes (Fuzzer)

App 1 13.18 11.95 9.35 119.45 107.55 84.80
App 2 35.82 24.32 35.91 321.70 L(TRPO) 217.50 323.40
App 3 372.88 M(TRPO) 165.41 240.72 3359.65 L(TRPO) 1484.30 2175.30
App 4 14.30 12.09 9.93 129.05 L(Fuzzer) 108.75 89.05
App 5 347.60 L(TRPO) 70.63 347.55 L(TRPO) 3112.35 L(TRPO) 633.20 3130.70 M(TRPO)
App 6 203.52 M(TRPO),L(Fuzzer) 87.37 77.73 1839.40 L(Fuzzer,TRPO) 785.20 696.70
App 7 90.06 M(TRPO) 36.36 64.64 L(TRPO) 810.65 L(TRPO) 330.05 580.75
App 8 14.23 M(TRPO),L(Fuzzer) 8.32 5.50 129.40 L(Fuzzer) 75.15 49.75
App 9 8.94 9.32 7.09 80.30 83.80 64.20
App 10 87.11 57.40 73.81 790.30 507.40 665.00
Overall 118.76 L(Fuzzer,TRPO) 48.32 87.22 1069.22 L(Fuzzer,TRPO) 433.29 785.96

Table 3. Mean number of unique inputs reaching sink functions and AUC across episodes for each algorithm. Effect sizes between
the best-performing algorithm (highlighted) and the other ones are reported only when the p-value is statistically significant (S =
Small; M = Medium; L = Large)

Penetration Testing of Embedded Systems 17

RQ1: Deep RL algorithms effectively reach sink functions, outperforming the black-box fuzzer algorithm in
almost every tested app.

RQ2: SAC and TRPO outperform the black-box fuzzer algorithm in reaching unique sinks across episodes, with
SAC achieving the fastest coverage of sink functions identified during static analysis.

RQ3: The results indicate that the SAC algorithm is the most effective, providing higher coverage of sink
functions in the companion app and more diverse inputs. This improves code coverage and the chance of
reaching APIs with potential RCE vulnerabilities. Therefore, we selected SAC as our Deep RL algorithm for the
second study.

5.3 IoT Device’s Vulnerability Exploitation

RQ4 [Vulnerability Reachability and Exploitation]: Among the vulnerability instances identified by static analysis

in the code, which are reached/exploited?

RQ5 [Efficiency]: How does the Payload Agent’s number of vulnerabilities reached/triggered grow across episodes? How

does the curve compare to that of a black-box fuzzer and coverage-based algorithms?

This study investigates the ability of a Deep RL-based agent to automatically exploit vulnerabilities in the firmware
of IoT devices through its companion mobile app. We focus on the number of unique IoT APIs that can be reached
through the app and the number of unique maliciously mutated inputs used to exploit the RCE vulnerabilities inside
the IoT API code. The goal is to determine whether a Deep RL agent, mutating input through the companion app, can
exploit more vulnerabilities within a set time frame compared to a black-box fuzzer and a coverage-based fuzzer. A
black-box fuzzer is an algorithm that operates within the same action space as Deep RL algorithms but generates the
action vector randomly at each step, without relying on a learned policy. A coverage-based fuzzer is an algorithm that
operates within the same action space as Deep RL algorithms. Instead of learning a policy, it selects the next action
to perform on the IoT device to approach a vulnerability identified during the static analysis phase incrementally.
Specifically, the algorithm stores payloads demonstrating progress toward the vulnerability and reapplies actions to
these payloads, iteratively reducing the distance to the target vulnerability in the IoT device.

We selected firmware from 10 D-Link IoT routers [18], as they are publicly available and primarily run php code. We
used the D-Link Wi-Fi app [35] (version 1.4.8) to interact with the firmware during testing. Table 4 lists the firmware
versions and the corresponding models.

18 Pagano et al.

Id Model Name Firmware Version

Frmw 1 DIR-645 FW105B01
Frmw 2 DIR-818L FW105b01
Frmw 3 DIR-822 B1 FW202KRb06
Frmw 4 DIR-822 C1 FW303WWb04_i4sa_middle
Frmw 5 DIR-846 enFW100A53DLA-Retail
Frmw 6 DIR-860L B1 FW203b03
Frmw 7 DIR-868L B1 FW203b01
Frmw 8 DIR-880L A1 FW107WWb08
Frmw 9 DIR-890 A1 FW111b04
Frmw 10 DIR-890L A1 FW100b25

Table 4. Firmware used in the testing campaign

We ran the selected firmware on a Raspberry Pi 5 device [37] to simulate a router, enabling the connection to the
mobile companion app installed on a smartphone. To minimize overhead, we used a lightweight Linux distribution built
with the Yocto [48] build system. The Raspberry Pi ARM [3] CPU allowed us to run the ARM-based firmware natively.
For non-ARM architectures, like MIPS, we used the Firmadyne [4] emulation tool. To address RQ4, we first detected RCE
vulnerabilities in the php code using Emba [25]. Based on the static analysis results, we modified the IoT firmware’s php
files using the Php-Parser library [26]. For RQ5, we compared Deep RL and black-box fuzzer algorithms to evaluate their
effectiveness in exploiting vulnerabilities over time. The experiments consisted of 10 episodes per mobile companion
app-IoT firmware pair, each episode running for 20 minutes for each algorithm. Performance was evaluated using
the AUC metric, as in previous studies. Each experiment was repeated ten times to account for non-determinism. We
applied the Shapiro-Wilk test to assess normality, followed by ANOVA for Gaussian distributions or the Wilcoxon
non-parametric test otherwise. We adopted the same effect sizes, classification notations, and rules as described in
Section 5.1.

5.4 IoT Device’s Vulnerability Exploitation Results

Figure 5 shows the mean number of unique vulnerabilities exploited per firmware, averaged across the experiment
repetitions. The figure compares the number of unique exploited vulnerabilities with the vulnerabilities detected
during the static analysis phase per firmware (indicated as # Real Vulnerabilities in the figure). We verified that these
vulnerabilities are true positives by manually analyzing the firmware’s code and mapping them to existing CVEs [7–11],
which confirm their validity. The Deep RL agent successfully reaches and exploits more vulnerabilities on average than
the black-box fuzzer in four of ten firmware samples. Although the black-box fuzzer algorithm typically exploits only
one unique vulnerability per firmware, the Deep RL agent manages to exploit different unique vulnerabilities identified
during the static analysis phase.

Table 5 shows the mean number of unique IoT APIs reached, AUC values, and the number of successful exploits
for SAC and the black-box fuzzer algorithm in different IoT firmware. We calculated the average number of unique
APIs and vulnerabilities exploited episode by episode for each firmware and algorithm, averaging the results across
repetitions. We used a Wilcoxon test to compare the number of unique APIs reached and calculated the paired Vargha-
Delaney effect size. We applied a one-way ANOVA test and calculated Cohen’s 𝑑 effect size for AUC and the number of
successful exploits. SAC consistently outperforms the black-box fuzzer and the coverage-based algorithm in all firmware

Penetration Testing of Embedded Systems 19

Fig. 5. Mean number of unique vulnerabilities exploited per firmware, averaged across the repetitions

concerning unique APIs discovered, AUC, and successful exploits. Overall, SAC averaged 9.97 unique APIs compared to
6.95 for the black-box fuzzer algorithm and 7.06 for the coverage-based fuzzer. Similarly, SAC successfully exploited
an average of 14.95 vulnerabilities, compared to 5.85 for the black-box fuzzer and 7.49 for the coverage-based fuzzer.
The AUC for SAC was also significantly higher, with an overall value of 134.39 compared to 52.83 for the black-box
fuzzer algorithm and 69.66 for the coverage-based fuzzer. In all cases, large effect sizes (L) confirm SAC’s statistical and
practical superiority over both the black-box and coverage-based algorithms.

Firmware Average unique
IoT APIs across
episodes (SAC)

Average
unique
IoT
APIs
across
episodes
(Rand)

Average
unique IoT
APIs across
episodes
(Cov)

Mean Area across
episodes (SAC)

Mean
Area
across
episodes
(Rand)

Mean
Area
across
episodes
(Cov)

Average successful ex-
ploit number across
episodes (SAC)

Average
suc-
cessful
exploit
num-
ber
across
episodes
(Rand)

Average
successful
exploit num-
ber across
episodes
(Cov)

Frmw1 9.85 L(Cov,Rand) 6.89 7.05 136.60 49.83 68.40 15.33 M(Rand),L(Cov) 5.46 7.36
Frmw2 9.98 L(Cov,Rand) 7.15 7.08 136.15 L(Cov,Rand) 57.78 73.10 14.93 M(Rand),L(Cov) 6.34 8.03
Frmw3 10.00 L(Cov,Rand) 6.88 7.07 137.33 L(Cov,Rand) 55.23 67.53 15.39 L(Cov,Rand) 6.19 7.30
Frmw4 9.86 L(Cov,Rand) 7.15 7.02 129.38 L(Cov,Rand) 52.83 64.95 14.53 M(Rand),L(Cov) 5.84 7.06
Frmw5 9.96 L(Cov,Rand) 6.86 7.22 143.83 L(Cov,Rand) 55.38 73.40 15.86 L(Cov,Rand) 6.29 7.88
Frmw6 10.36 L(Cov,Rand) 6.83 7.25 S(Rand) 148.83 L(Cov,Rand) 48.73 70.30 16.39 L(Cov,Rand) 5.35 7.42
Frmw7 9.98 L(Cov,Rand) 6.92 6.98 134.58 L(Cov,Rand) 57.58 66.03 14.68 L(Cov,Rand) 6.40 7.26
Frmw8 9.89 L(Cov,Rand) 7.21 7.02 117.88 L(Cov,Rand) 48.90 78.80 13.25 M(Rand),L(Cov) 5.46 8.21
Frmw9 9.99 L(Cov,Rand) 6.72 6.93 129.33 L(Cov,Rand) 52.30 73.70 14.67 M(Rand) 5.68 7.88 L(Rand)
Frmw10 9.86 L(Cov,Rand) 6.88 6.99 129.98 L(Cov,Rand) 49.73 60.38 14.47 L(Cov,Rand) 5.52 6.50
Overall 9.97 L(Cov,Rand) 6.95 7.06 134.39 L(Cov,Rand) 52.83 69.66 14.95 L(Cov,Rand) 5.85 7.49

Table 5. Mean number of unique sink APIs on IoT devices and AUC across episodes for each algorithm. Effect sizes between the SAC
algorithm and the best fuzzer (the type of fuzzer is in brackets) are reported only when the 𝑝-value is statistically significant (S =
Small; M = Medium; L = Large)

Table 6 shows the mean number of unique inputs that reach RCE vulnerabilities of the IoT device and the AUC across
episodes for the SAC and the black-box fuzzer algorithms. We calculated each firmware’s average number of unique
inputs episode by episode, averaging the results across experiment repetitions. We used a paired Wilcoxon test with the
paired Vargha-Delaney effect size to compare the number of unique inputs generated by each algorithm. For AUC, we
applied a one-way analysis of variance (ANOVA) test and calculated Cohen’s 𝑑 effect size. SAC averages 8.03 unique
inputs, compared to 6.49 for the black-box fuzzer algorithm and 5.81 for the coverage-based algorithm, with large
effect sizes (L) observed across all firmware. This confirms that SAC consistently discovers more unique inputs capable

20 Pagano et al.

of triggering RCE vulnerabilities. In terms of AUC, SAC also shows a clear advantage. For example, SAC achieves
an overall AUC of 116.92 compared to 50.10 for the black-box fuzzer algorithm and to 65.44 for the coverage-based
algorithm, with large effect sizes (L) further supporting the practical significance of the superiority of SAC.

Firmware Average unique in-
puts across episodes
(SAC)

Average
unique
inputs
across
episodes
(Cov)

Average
unique in-
puts across
episodes
(Rand)

Mean Area across
episodes (SAC)

Mean
Area
across
episodes
(Cov)

Mean Area
across
episodes
(Rand)

Frmw 1 6.69 L(Rand) 4.98 6.17 L(Cov) 111.53 L(Rand, Cov) 46.02 63.52
Frmw 2 6.81 M(Rand),S(Cov) 5.20 6.08 M(Cov) 110.50 M(Cov) 53.40 66.25
Frmw 3 6.81 L(Rand),M(Cov) 5.17 6.06 M(Cov) 114.10 M(Rand),L(Cov) 52.08 61.33
Frmw 4 6.88 L(Rand),S(Cov) 5.17 6.10 M(Cov) 109.60 M(Rand),L(Cov) 49.10 59.90
Frmw 5 6.95 L(Rand),S(Cov) 5.04 6.26 M(Cov) 120.30 M(Rand),L(Cov) 51.75 66.65
Frmw 6 9.54 L(Rand,Cov) 6.58 7.08 S(Cov) 125.25 L(Rand,Cov) 47.27 65.90
Frmw 7 8.85 L(Rand,Cov) 6.30 6.77 S(Cov) 121.92 M(Rand,Cov) 54.48 64.80
Frmw 8 8.85 L(Rand,Cov) 6.44 6.70 109.70 M(Cov) 45.83 75.28
Frmw 9 9.73 L(Rand,Cov) 6.56 6.87 125.92 M(Rand),L(Cov) 51.90 71.95
Frmw 10 9.25 L(Rand,Cov) 6.60 6.83 120.38 L(Rand,Cov) 49.17 58.85
Overall 8.03 L(Rand,Cov) 5.81 6.49 116.92 L(Rand,Cov) 50.10 65.44 L(Cov)

Table 6. Mean number of unique inputs reaching IoT device’s RCE vulnerabilities and AUC across episodes for each algorithm.
Effect sizes between the SAC algorithm and the best fuzzer (the type of fuzzer is in brackets) are reported only when the p-value is
statistically significant (S = Small; M = Medium; L = Large)

Figure 6 presents the mean cumulative number of unique IoT APIs reached and the successfully exploited vul-
nerabilities across episodes averaged over the selected firmware samples. The left subfigure shows the cumulative
number of unique IoT APIs triggered, with SAC consistently reaching more APIs than the black-box fuzzer and the
coverage-based algorithms. Despite this difference, the growth trend remains similar for all the algorithms. The right
subfigure illustrates the mean cumulative number of exploited vulnerabilities. SAC demonstrates a significantly higher
and faster exploitation rate than the black-box fuzzer and the coverage-based algorithms.

Fig. 6. i) Mean cumulative number of unique IoT APIs reached ii) Mean number of vulnerabilities exploited over the episodes

RQ4: The results show that the SAC algorithm achieves high coverage in exploiting vulnerabilities identified
during static analysis, outperforming the black-box fuzzer in 4 cases and the coverage-based algorithm in 6
cases exploiting the same vulnerabilities in the others.

Penetration Testing of Embedded Systems 21

RQ5: The SAC algorithm consistently identifies more unique IoT APIs and achieves higher coverage of the API
set than the black-box fuzzer and the coverage-based algorithm. Additionally, SAC exploits more vulnerabilities
over episodes, proving more effective overall.

5.5 MITHRAS’s Execution Statistics

A complete test generation session lasts 100 minutes. Each episode increases CPU utilization by 12% and consumes 3.83
W of energy. Execution time and energy consumption metrics were recorded for each 10-minute episode. At idle, the
Raspberry Pi 5 exhibited an average CPU utilization of 0.18% (sampled every 5 seconds over 10 minutes), an energy
consumption of 3.01 W, and a RAM usage of 0.24 GB. When running the original IoT device software, average CPU
utilization raised to 12%, energy consumption to 3.83 W, and RAM usage to 0.28 GB. With the instrumented IoT device
software, CPU utilization increased to an average of 15%, energy consumption to 3.96 W, and RAM usage to 0.29 GB.
Regarding execution timing, the Layout agent triggers a new action on the app’s layout approximately every 25 seconds.
This delay occurs because the Layout agent pauses upon reaching a sink function, awaiting the reward computation
from the Payload agent. After injecting a maliciously mutated payload into the smartphone, the Payload agent waits 10
seconds before processing the execution trace received from the IoT device.

6 DISCUSSION & LIMITATIONS

The experimental results demonstrate that MITHRAS outperforms black-box random strategies concerning the coverage
of the communication function within the companion app, the IoT APIs reached, and successful exploit attempts. We
manually inspected the firmware’s code to verify which vulnerabilities Emba detected were true positives. We used
payloads generated by the Payload Agent to confirm that the agent exploited the vulnerabilities discovered by
Emba. Based on our manual code inspection and analysis of Emba’s results, we mapped the identified vulnerabilities
to public CVEs [7–11] that affect the firmware selected for the testing campaign, confirming the validity of these
vulnerabilities. MITHRAS’s methodology can be extended to support additional vulnerabilities. While the current
implementation focuses solely on exploiting RCE vulnerabilities, it can be adapted for other types. To extend support
for a new vulnerability, the user must modify the Php AST Static Instrumenter to inject the necessary code
for obtaining runtime feedback during exploitation. If the vulnerability involves function calls within the PHP code,
adaptation is straightforward, as MITHRAS already handles function calls that execute system commands on the
IoT device. However, additional modifications may be required for other types of vulnerabilities, both to identify the
vulnerable code and inject instrumentation able to log its output. Finally, the Payload agent’s action space must be
modified to support actions that trigger the new vulnerability, requiring updates to its logic accordingly. Our approach
has shown promise, but it also presents limitations. For the companion app on the smartphone, we use the Frida
tool to instrument the sink functions identified during static analysis and trigger the Payload Agent. However, if
the app employs anti-Frida mechanisms, as described in [36], neither the RL nor the black-box algorithms can inject
payload mutations. To overcome this, we could modify the app to bypass these checks or explore alternative solutions
such as VirtualApp [28], which allows the app to run in a container app installed on the smartphone, enabling the
instrumentation of sink functions with a lower risk of detection. MITHRAS’s static analysis on the IoT device is currently
limited to php code, which means it does not collect coverage for other programming languages or binaries. This limits
the runtime feedback and the range of vulnerabilities (such as RCE) the tool can target. A future enhancement would
be to extend the analysis to cover other languages and binary files.

22 Pagano et al.

7 CONCLUSIONS

This paper presents MITHRAS, a novel security testing approach that maliciously uses companion mobile apps to
mutate legitimate data sent to IoT devices. By combining static and dynamic analysis, MITHRAS automatically identifies
the app’s code for communication with the IoT device. It employs Deep RL techniques to automate the app’s navigation
and mutate legitimate data delivered to the IoT device. Additionally, it injects code into the IoT device’s programs to
collect runtime feedback, enabling the Deep RL agents to compute rewards at each step. Experimental results show that
the Deep RL approach significantly outperforms black-box random exploration regarding IoT API coverage and the
number of successfully exploited vulnerabilities.

8 DATA AVAILABILITY

We make our replication package publicly available to support the reproducibility of our findings: https://github.com/
X3no21/Mithras.

REFERENCES
[1] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. Sok: Security evaluation of home-based iot deployments. In 2019 IEEE

symposium on security and privacy (sp). IEEE, 1362–1380.
[2] appium.io. Accessed in February 26, 2025. Appium. https://appium.io/docs/en/latest/.
[3] arm.com. Accessed in February 26, 2025. Arm. https://www.arm.com/.
[4] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. 2016. Towards automated dynamic analysis for linux-based embedded firmware..

In NDSS, Vol. 1. 1–1.
[5] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin, XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and

Kehuan Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-based Fuzzing.. In NDSS.
[6] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. 2014. A {Large-scale} analysis of the security of embedded firmwares. In

23rd USENIX security symposium (USENIX Security 14). 95–110.
[7] cve.mitre.org. Accessed in February 26, 2025. CVE-2018-19986. https://www.cve.org/CVERecord?id=CVE-2018-19986.
[8] cve.mitre.org. Accessed in February 26, 2025. CVE-2018-19987. https://www.cve.org/CVERecord?id=CVE-2018-19987.
[9] cve.mitre.org. Accessed in February 26, 2025. CVE-2018-19988. https://www.cve.org/CVERecord?id=CVE-2018-19988.
[10] cve.mitre.org. Accessed in February 26, 2025. CVE-2018-19989. https://www.cve.org/CVERecord?id=CVE-2018-19989.
[11] cve.mitre.org. Accessed in February 26, 2025. CVE-2018-19990. https://www.cve.org/CVERecord?id=CVE-2018-19990.
[12] cve.mitre.org. Accessed in February 26, 2025. CVE Routers. https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=router.
[13] cwe.mitre.org. Accessed in February 26, 2025. CWE-94: Improper Control of Generation of Code (’Code Injection’). https://cwe.mitre.org/data/

definitions/94.html.
[14] Yaniv David, Nimrod Partush, and Eran Yahav. 2018. FirmUp: Precise Static Detection of Common Vulnerabilities in Firmware. SIGPLAN Not. 53, 2

(mar 2018), 392–404. https://doi.org/10.1145/3296957.3177157
[15] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. 2013. {FIE} on firmware: Finding vulnerabilities in embedded systems

using symbolic execution. In 22nd USENIX Security Symposium (USENIX Security 13). 463–478.
[16] developer.android.com. Accessed in February 26, 2025. Android Developer. https://developer.android.com/studio/run/emulator?hl=en.
[17] developer.android.com. Accessed in February 26, 2025. Intent. https://developer.android.com/reference/android/content/Intent.
[18] dlink.com. Accessed in February 26, 2025. Dlink. https://www.dlink.com/uk/en.
[19] Xuechao Du, Andong Chen, Boyuan He, Hao Chen, Fan Zhang, and Yan Chen. 2022. AflIot: Fuzzing on linux-based IoT device with binary-level

instrumentation. Computers & Security 122 (2022), 102889.
[20] explodingtopics.com. Accessed in February 26, 2025. Number of IoT Devices (2024). https://explodingtopics.com/blog/number-of-iot-devices.
[21] Xiaotao Feng, Ruoxi Sun, Xiaogang Zhu, Minhui Xue, Sheng Wen, Dongxi Liu, Surya Nepal, and Yang Xiang. 2021. Snipuzz: Black-box fuzzing of

iot firmware via message snippet inference. In Proceedings of the 2021 ACM SIGSAC conference on computer and communications security. 337–350.
[22] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++ : Combining Incremental Steps of Fuzzing Research. In 14th USENIX

Workshop on Offensive Technologies (WOOT 20). USENIX Association. https://www.usenix.org/conference/woot20/presentation/fioraldi
[23] frida.re. Accessed in February 26, 2025. Frida. https://frida.re.
[24] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing function approximation error in actor-critic methods. In International conference on

machine learning. PMLR, 1587–1596.
[25] github.com. Accessed in February 26, 2025. Emba. https://github.com/e-m-b-a/emba.

https://github.com/X3no21/Mithras
https://github.com/X3no21/Mithras
https://appium.io/docs/en/latest/
https://www.arm.com/
https://www.cve.org/CVERecord?id=CVE-2018-19986
https://www.cve.org/CVERecord?id=CVE-2018-19987
https://www.cve.org/CVERecord?id=CVE-2018-19988
https://www.cve.org/CVERecord?id=CVE-2018-19989
https://www.cve.org/CVERecord?id=CVE-2018-19990
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=router
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/94.html
https://doi.org/10.1145/3296957.3177157
https://developer.android.com/studio/run/emulator?hl=en
https://developer.android.com/reference/android/content/Intent
https://www.dlink.com/uk/en
https://explodingtopics.com/blog/number-of-iot-devices
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://frida.re
https://github.com/e-m-b-a/emba

Penetration Testing of Embedded Systems 23

[26] github.com. Accessed in February 26, 2025. PHP-Parser. https://github.com/nikic/PHP-Parser.
[27] github.com. Accessed in February 26, 2025. Stable Baseline. https://github.com/DLR-RM/stable-baselines3.
[28] github.com. Accessed in February 26, 2025. VirtualApp. https://github.com/asLody/VirtualApp/tree/master.
[29] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning

with a stochastic actor. In International conference on machine learning. PMLR, 1861–1870.
[30] Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and Yongdae Kim. 2020. Firmae: Towards large-scale emulation of iot

firmware for dynamic analysis. In Proceedings of the 36th Annual Computer Security Applications Conference. 733–745.
[31] Deepak Kumar, Kelly Shen, Benton Case, Deepali Garg, Galina Alperovich, Dmitry Kuznetsov, Rajarshi Gupta, and Zakir Durumeric. 2019. All

things considered: An analysis of {IoT} devices on home networks. In 28th USENIX security symposium (USENIX Security 19). 1169–1185.
[32] H. Liu, S. Gan, C. Zhang, Z. Gao, H. Zhang, X. Wang, and G. Gao. 2024. LABRADOR: Response Guided Directed Fuzzing for Black-box IoT Devices.

In 2024 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 130–130. https://doi.org/10.1109/SP54263.
2024.00127

[33] Volodymyr Mnih. 2016. Asynchronous Methods for Deep Reinforcement Learning. arXiv preprint arXiv:1602.01783 (2016).
[34] Afshin Oroojlooy and Davood Hajinezhad. 2023. A review of cooperative multi-agent deep reinforcement learning. Applied Intelligence 53, 11

(2023), 13677–13722.
[35] play.google.com. Accessed in February 26, 2025. Dlink Wifi App. https://play.google.com/store/apps/details?id=com.dlink.dlinkwifi&hl=en.
[36] preemptive.com. Accessed in February 26, 2025. Detect Frida for Android. https://darvincitech.wordpress.com/2019/12/23/detect-frida-for-android/.
[37] raspberrypi.com. Accessed in February 26, 2025. Raspberry Pi 5. https://www.raspberrypi.com/products/raspberry-pi-5/.
[38] Nilo Redini, Andrea Continella, Dipanjan Das, Giulio De Pasquale, Noah Spahn, Aravind Machiry, Antonio Bianchi, Christopher Kruegel, and

Giovanni Vigna. 2021. Diane: Identifying Fuzzing Triggers in Apps to Generate Under-constrained Inputs for IoT Devices. In 2021 IEEE Symposium
on Security and Privacy (SP). 484–500. https://doi.org/10.1109/SP40001.2021.00066

[39] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2020. Karonte: Detecting insecure multi-binary interactions in embedded firmware. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
1544–1561.

[40] Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella. 2022. Deep reinforcement learning for black-box testing of android apps.
ACM Transactions on Software Engineering and Methodology (TOSEM) 31, 4 (2022), 1–29.

[41] Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella. 2023. Assessing the security of inter-app communications in android
through reinforcement learning. Computers & Security 131 (2023), 103311. https://doi.org/10.1016/j.cose.2023.103311

[42] John Schulman. 2015. Trust Region Policy Optimization. arXiv preprint arXiv:1502.05477 (2015).
[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347 (2017).
[44] Yan Shoshitaishvili, RuoyuWang, ChristopheHauser, Christopher Kruegel, andGiovanni Vigna. 2015. Firmalice-automatic detection of authentication

bypass vulnerabilities in binary firmware.. In NDSS, Vol. 1. 1–1.
[45] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. 2014. Deterministic policy gradient algorithms. In

International conference on machine learning. Pmlr, 387–395.
[46] threatpost.com. Accessed in February 26, 2025. Travel Routers, NAS Devices Among Easily Hacked IoT Devices. https://threatpost.com/travel-

routers-nas-devices-among-easily-hacked-iot-devices/124877/.
[47] Christopher John Cornish Hellaby Watkins. 1989. Learning from delayed rewards. (1989).
[48] yoctoproject.org. Accessed in February 26, 2025. Yocto. https://www.yoctoproject.org/.
[49] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and Limin Sun. 2019. FIRM-AFL: High-Throughput Greybox Fuzzing of

IoT Firmware via Augmented Process Emulation. In 28th USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA,
1099–1114. https://www.usenix.org/conference/usenixsecurity19/presentation/zheng

https://github.com/nikic/PHP-Parser
https://github.com/DLR-RM/stable-baselines3
https://github.com/asLody/VirtualApp/tree/master
https://doi.org/10.1109/SP54263.2024.00127
https://doi.org/10.1109/SP54263.2024.00127
https://play.google.com/store/apps/details?id=com.dlink.dlinkwifi&hl=en
https://darvincitech.wordpress.com/2019/12/23/detect-frida-for-android/
https://www.raspberrypi.com/products/raspberry-pi-5/
https://doi.org/10.1109/SP40001.2021.00066
https://doi.org/10.1016/j.cose.2023.103311
https://threatpost.com/travel-routers-nas-devices-among-easily-hacked-iot-devices/124877/
https://threatpost.com/travel-routers-nas-devices-among-easily-hacked-iot-devices/124877/
https://www.yoctoproject.org/
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Deep Reinforcement Learning (Deep RL)
	3.2 Remote Code Execution Vulnerabilities

	4 Methodology
	4.1 Setup Phase
	4.2 Dynamic Analysis Phase
	4.3 Layout Agent
	4.4 Payload Agent
	4.5 Multi Agent
	4.6 Pseudocode
	4.7 Implementation

	5 Evaluation
	5.1 Companion App's Sink Reachability
	5.2 Companion App's Sink Reachability Results
	5.3 IoT Device's Vulnerability Exploitation
	5.4 IoT Device's Vulnerability Exploitation Results
	5.5 MITHRAS's Execution Statistics

	6 Discussion & Limitations
	7 Conclusions
	8 Data Availability
	References

