Skip to main content

Advertisement

Log in

Multifaceted paternal exposures before conception and their epigenetic impact on offspring

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

As scientific research progresses, there is an increasing understanding of the importance of paternal epigenetics in influencing the health and developmental path of offspring. Prior to conception, the environmental exposures and lifestyle choices of fathers can significantly influence the epigenetic state of sperm, including DNA methylation and histone changes, among other factors. These alterations in epigenetic patterns have the potential for transgenerational transmission potential and may exert profound effects on the biological characteristics of descendants. Paternal epigenetic changes not only affect the regulation of gene expression patterns in offspring but also increase the risk to certain diseases. It is crucial to comprehend the conditions that fathers are exposed to before conception and the potential outcomes of these conditions. This understanding is essential for assessing personal reproductive decisions and anticipating health risks for future generations. This review article systematically summarizes and analyzes current research findings regarding how paternal pre-pregnancy exposures influence offspring as well as elucidates underlying mechanisms, aiming to provide a comprehensive perspective for an enhanced understanding of the impact that paternal factors have on offspring health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Chen T, Li E. Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol. 2004;60:55–89. https://doi.org/10.1016/S0070-2153(04)60003-2.

    Article  CAS  PubMed  Google Scholar 

  2. Montjean D, Zini A, Ravel C, et al. Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology. 2015;3(2):235–40. https://doi.org/10.1111/andr.12001.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Sun Z, Jia J, et al. Overview of histone modification. Adv Exp Med Biol. 2021;1283:1–16. https://doi.org/10.1007/978-981-15-8104-5_1.

    Article  CAS  PubMed  Google Scholar 

  4. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15(suppl_1):R17–29. https://doi.org/10.1093/hmg/ddl046.

    Article  CAS  PubMed  Google Scholar 

  5. Perez MF, Lehner B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat Cell Biol. 2019;21(2):143–51. https://doi.org/10.1038/s41556-018-0242-9.

    Article  CAS  PubMed  Google Scholar 

  6. Xing Y, Shi S, Le L, Lee CA, Silver-Morse L, Li WX. Evidence for transgenerational transmission of epigenetic tumor susceptibility in Drosophila. PLoS Genet. 2007;3(9):e151. https://doi.org/10.1371/journal.pgen.0030151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blake GE, Watson ED. Unravelling the complex mechanisms of transgenerational epigenetic inheritance. Curr Opin Chem Biol. 2016;33:101–7. https://doi.org/10.1016/j.cbpa.2016.06.008.

    Article  CAS  PubMed  Google Scholar 

  8. Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update. 2019;25(5):518–40. https://doi.org/10.1093/humupd/dmz017.

    Article  CAS  PubMed  Google Scholar 

  9. Seisenberger S, Andrews S, Krueger F, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012;48(6):849–62. https://doi.org/10.1016/j.molcel.2012.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hackett JA, Sengupta R, Zylicz JJ, et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science. 2013;339(6118):448–52. https://doi.org/10.1126/science.1229277.

    Article  CAS  PubMed  Google Scholar 

  11. Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet. 2012;13(3):153–62. https://doi.org/10.1038/nrg3188.

    Article  CAS  PubMed  Google Scholar 

  12. Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117(1–2):15–23. https://doi.org/10.1016/s0925-4773(02)00181-8.

    Article  CAS  PubMed  Google Scholar 

  13. Guibert S, Forné T, Weber M. Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res. 2012;22(4):633–41. https://doi.org/10.1101/gr.130997.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta. 2014;1839(3):155–68. https://doi.org/10.1016/j.bbagrm.2013.08.004.

    Article  CAS  PubMed  Google Scholar 

  15. Moritz L, Schon SB, Rabbani M, et al. Sperm chromatin structure and reproductive fitness are altered by substitution of a single amino acid in mouse protamine 1. Nat Struct Mol Biol. 2023;30(8):1077–91. https://doi.org/10.1038/s41594-023-01033-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo F, Li X, Liang D, et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 2014;15(4):447–59. https://doi.org/10.1016/j.stem.2014.08.003.

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Zhang J, Duan J, et al. Programming and inheritance of parental DNA methylomes in mammals [published correction appears in Cell. Cell. 2014;157(4):979–91. https://doi.org/10.1016/j.cell.2014.04.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burton A, Torres-Padilla ME. Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief Funct Genomics. 2010;9(5–6):444–54. https://doi.org/10.1093/bfgp/elq027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu P, Guo H, Ren Y, et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet. 2018;50(1):12–9. https://doi.org/10.1038/s41588-017-0007-6.

    Article  CAS  PubMed  Google Scholar 

  20. Bhutani N, Burns DM, Blau HM. DNA demethylation dynamics. Cell. 2011;146(6):866–72. https://doi.org/10.1016/j.cell.2011.08.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zeng Y, Chen T. DNA Methylation reprogramming during mammalian development. Genes. 2019;10(4):257. https://doi.org/10.3390/genes10040257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jung YH, Kremsky I, Gold HB, et al. Maintenance of CTCF- and transcription factor-mediated interactions from the gametes to the early mouse embryo. Mol Cell. 2019;75(1):154-171.e5. https://doi.org/10.1016/j.molcel.2019.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eskenazi B, Castorina R. Association of prenatal maternal or postnatal child environmental tobacco smoke exposure and neurodevelopmental and behavioral problems in children. Environ Health Perspect. 1999;107(12):991–1000. https://doi.org/10.1289/ehp.99107991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang J, Fu Z, Liu Q, et al. Interactions among maternal smoking, breastfeeding, and offspring genetic factors on the risk of adult-onset hypertension. BMC Med. 2022;20(1):454. https://doi.org/10.1186/s12916-022-02648-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang R, Sun T, Yang Q, et al. Low birthweight of children is positively associated with mother’s prenatal tobacco smoke exposure in Shanghai: a cross-sectional study. BMC Pregnancy Childbirth. 2020;20(1):603. https://doi.org/10.1186/s12884-020-03307-x.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Chen S, Pang D, et al. Effects of paternal exposure to cigarette smoke on sperm DNA methylation and long-term metabolic syndrome in offspring. Epigenetics Chromatin. 2022;15(1):3. https://doi.org/10.1186/s13072-022-00437-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. You Y, Liu R, Zhou H, et al. Effect of exposure to paternal smoking on overweight and obesity in children: findings from the children lifeway cohort in Shenzhen. Southern China Obes Facts. 2022;15(4):609–20. https://doi.org/10.1159/000525544.

    Article  CAS  PubMed  Google Scholar 

  28. Mørkve Knudsen GT, Rezwan FI, Johannessen A, et al. Epigenome-wide association of father’s smoking with offspring DNA methylation: a hypothesis-generating study. Environ Epigenetics. 2019;5(4):dvz023. https://doi.org/10.1093/eep/dvz023.

    Article  Google Scholar 

  29. Mexal S, Berger R, Pearce L, et al. Regulation of a novel αN-catenin splice variant in schizophrenic smokers. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(6):759–68. https://doi.org/10.1002/ajmg.b.30679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Havdahl A, Wootton RE, Leppert B, et al. Associations between pregnancy-related predisposing factors for offspring neurodevelopmental conditions and parental genetic liability to attention-deficit/hyperactivity disorder, autism, and schizophrenia. JAMA Psychiat. 2022;79(8):799. https://doi.org/10.1001/jamapsychiatry.2022.1728.

    Article  Google Scholar 

  31. Kitaba NT, Knudsen GTM, Johannessen A, et al. Fathers’ pre-pregnancy smoking and offspring DNA methylation. Clin Epigenetics. 2023;15(1):131. https://doi.org/10.1186/s13148-023-01540-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Northstone K, Golding J, Davey Smith G, Miller LL, Pembrey M. Prepubertal start of father’s smoking and increased body fat in his sons: further characterisation of paternal transgenerational responses. Eur J Hum Genet. 2014;22(12):1382–6. https://doi.org/10.1038/ejhg.2014.31.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Knudsen GTM, Dharmage S, Janson C, et al. Parents’ smoking onset before conception as related to body mass index and fat mass in adult offspring: findings from the RHINESSA generation study. PLoS ONE. 2020;15(7):e0235632. https://doi.org/10.1371/journal.pone.0235632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Accordini S, Calciano L, Johannessen A, et al. Prenatal and prepubertal exposures to tobacco smoke in men may cause lower lung function in future offspring: a three-generation study using a causal modelling approach. Eur Respir J. 2021;58(4):2002791. https://doi.org/10.1183/13993003.02791-2020.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Accordini S, Calciano L, Johannessen A, et al. A three-generation study on the association of tobacco smoking with asthma. Int J Epidemiol. 2018;47(4):1106–17. https://doi.org/10.1093/ije/dyy031.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu J, Bowatte G, Pham J, et al. Pre-pubertal smoke exposure of fathers and increased risk of offspring asthma: a possible transgenerational effect. Eur Respir J. 2022;60(4):2200257. https://doi.org/10.1183/13993003.00257-2022.

    Article  PubMed  Google Scholar 

  37. Wu CC, Hsu TY, Chang JC, et al. Paternal tobacco smoke correlated to offspring asthma and prenatal epigenetic programming. Front Genet. 2019;10:471. https://doi.org/10.3389/fgene.2019.00471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mejia-Lancheros C, Mehegan J, Murrin CM, et al. Smoking habit from the paternal line and grand-child’s overweight or obesity status in early childhood: prospective findings from the lifeways cross-generation cohort study. Int J Obes. 2018;42:1853–70. https://doi.org/10.1038/s41366-018-0039-8.

    Article  Google Scholar 

  39. The ALSPAC Study Team, Pembrey ME, Bygren LO, et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14(2):159–66. https://doi.org/10.1038/sj.ejhg.5201538.

    Article  Google Scholar 

  40. Bailey HD, Lacour B, Guerrini-Rousseau L, et al. Parental smoking, maternal alcohol, coffee and tea consumption and the risk of childhood brain tumours: the ESTELLE and ESCALE studies (SFCE, France). Cancer Causes Control. 2017;28(7):719–32. https://doi.org/10.1007/s10552-017-0900-4.

    Article  PubMed  Google Scholar 

  41. Milne E, Greenop KR, Scott RJ, et al. Parental smoking and risk of childhood brain tumors. Int J Cancer. 2013;133(1):253–9. https://doi.org/10.1002/ijc.28004.

    Article  CAS  PubMed  Google Scholar 

  42. Filippini G, Maisonneuve P, McCredie M, et al. Relation of childhood brain tumors to exposure of parents and children to tobacco smoke: The Search International Case-Control Study. Int J Cancer. 2002;100(2):206–13. https://doi.org/10.1002/ijc.10465.

    Article  CAS  PubMed  Google Scholar 

  43. Hamad MF, Dayyih WAA, Laqqan M, AlKhaled Y, Montenarh M, Hammadeh ME. The status of global DNA methylation in the spermatozoa of smokers and non-smokers. Reprod Biomed Online. 2018;37(5):581–9. https://doi.org/10.1016/j.rbmo.2018.08.016.

    Article  CAS  PubMed  Google Scholar 

  44. Murphy PJ, Guo J, Jenkins TG, et al. NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. PLoS Genet. 2020;16(6):e1008756. https://doi.org/10.1371/journal.pgen.1008756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hammer B, Kadalayil L, Boateng E, et al. Preconceptional smoking alters spermatozoal miRNAs of murine fathers and affects offspring’s body weight. Int J Obes. 2021;45(7):1623–7.

    Article  CAS  Google Scholar 

  46. Glantz SA, Bareham DW. E-Cigarettes: use, effects on smoking, risks, and policy implications. Annu Rev Public Health. 2018;39:215–35. https://doi.org/10.1146/annurev-publhealth-040617-013757.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Benowitz NL, Fraiman JB. Cardiovascular effects of electronic cigarettes. Nat Rev Cardiol. 2017;14(8):447–56. https://doi.org/10.1038/nrcardio.2017.36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maurer JJ, Wimmer ME, Turner CA, et al. Paternal nicotine taking elicits heritable sex-specific phenotypes that are mediated by hippocampal Satb2. Mol Psychiatry. 2022;27(9):3864–74. https://doi.org/10.1038/s41380-022-01622-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hawkey AB, White H, Pippen E, et al. Paternal nicotine exposure in rats produces long-lasting neurobehavioral effects in the offspring. Neurotoxicol Teratol. 2019;74:106808. https://doi.org/10.1016/j.ntt.2019.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McCarthy DM, Morgan TJ, Lowe SE, et al. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol. 2018;16(10):e2006497. https://doi.org/10.1371/journal.pbio.2006497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang M, Zhang D, Dai J, et al. Paternal nicotine exposure induces hyperactivity in next-generation via down-regulating the expression of DAT. Toxicology. 2020;431:152367. https://doi.org/10.1016/j.tox.2020.152367.

    Article  CAS  PubMed  Google Scholar 

  52. Vallaster MP, Kukreja S, Bing XY, et al. Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring. eLife. 2017;6:e24771. https://doi.org/10.7554/eLife.24771.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Keyhan S, Burke E, Schrott R, et al. Male obesity impacts DNA methylation reprogramming in sperm. Clin Epigenetics. 2021;13(1):17. https://doi.org/10.1186/s13148-020-00997-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Noor N, Cardenas A, Rifas-Shiman SL, et al. Association of periconception paternal body mass index with persistent changes in DNA methylation of offspring in childhood. JAMA Netw Open. 2019;2(12):e1916777. https://doi.org/10.1001/jamanetworkopen.2019.16777.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sharp GC, Alfano R, Ghantous A, et al. Paternal body mass index and offspring DNA methylation: findings from the PACE consortium. Int J Epidemiol. 2021;50(4):1297–315. https://doi.org/10.1093/ije/dyaa267.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Potabattula R, Dittrich M, Schorsch M, Hahn T, Haaf T, El Hajj N. Male obesity effects on sperm and next-generation cord blood DNA methylation. PLoS ONE. 2019;14(6):e0218615. https://doi.org/10.1371/journal.pone.0218615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fontelles CC, Carney E, Clarke J, et al. Paternal overweight is associated with increased breast cancer risk in daughters in a mouse model. Sci Rep. 2016;6(1):28602. https://doi.org/10.1038/srep28602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Johannessen A, Lønnebotn M, Calciano L, et al. Being overweight in childhood, puberty, or early adulthood: changing asthma risk in the next generation? J Allergy Clin Immunol. 2020;145(3):791-799.e4. https://doi.org/10.1016/j.jaci.2019.08.030.

    Article  PubMed  Google Scholar 

  59. Bowatte G, Bui DS, Priyankara S, et al. Parental pre-pregnancy BMI trajectories from childhood to adolescence and asthma in the future offspring. J Allergy Clin Immunol. 2022;150(1):67-74.e30. https://doi.org/10.1016/j.jaci.2021.11.028.

    Article  PubMed  Google Scholar 

  60. Lønnebotn M, Calciano L, Johannessen A, et al. Parental prepuberty overweight and offspring lung function. Nutrients. 2022;14(7):1506. https://doi.org/10.3390/nu14071506.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Deveci AC, Keown-Stoneman CDG, Maguire JL, et al. Paternal BMI in the pre-pregnancy period, and the association with child zBMI. Int J Obes. 2023;47(4):280–7. https://doi.org/10.1038/s41366-023-01261-0.

    Article  Google Scholar 

  62. Jääskeläinen A, Pussinen J, Nuutinen O, et al. Intergenerational transmission of overweight among Finnish adolescents and their parents: a 16-year follow-up study. Int J Obes. 2011;35(10):1289–94. https://doi.org/10.1038/ijo.2011.150.

    Article  Google Scholar 

  63. Loomba R, Hwang S, O’Donnell CJ, et al. Parental obesity and offspring serum alanine and aspartate aminotransferase levels: the Framingham Heart Study. Gastroenterology. 2008;134(4):953-959.e1. https://doi.org/10.1053/j.gastro.2008.01.037.

    Article  CAS  PubMed  Google Scholar 

  64. Retnakaran R, Wen SW, Tan H, et al. Paternal weight prior to conception and infant birthweight: a prospective cohort study. Nutr Diabetes. 2021;11(1):28. https://doi.org/10.1038/s41387-021-00172-1.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lin Y, Chen Z, Qian Q, et al. Effects of paternal obesity on maternal-neonatal outcomes and long-term prognosis in adolescents. Front Endocrinol. 2023;14:1114250. https://doi.org/10.3389/fendo.2023.1114250.

    Article  Google Scholar 

  66. Punjabi U, Goovaerts I, Peeters K, Van Mulders H, De Neubourg D. Sperm as a carrier of genome instability in relation to paternal lifestyle and nutritional conditions. Nutrients. 2022;14(15):3155. https://doi.org/10.3390/nu14153155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raee P, Shams Mofarahe Z, Nazarian H, et al. Male obesity is associated with sperm telomere shortening and aberrant mRNA expression of autophagy-related genes. Basic Clin Androl. 2023;33(1):13. https://doi.org/10.1186/s12610-023-00188-w.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pini T, Parks J, Russ J, et al. Obesity significantly alters the human sperm proteome, with potential implications for fertility. J Assist Reprod Genet. 2020;37(4):777–87. https://doi.org/10.1007/s10815-020-01707-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Crean AJ, Senior AM, Freire T, et al. Paternal dietary macronutrient balance and energy intake drive metabolic and behavioral differences among offspring. Nat Commun. 2024;15(1):2982. https://doi.org/10.1038/s41467-024-46782-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chleilat F, Schick A, Deleemans JM, et al. Paternal high protein diet modulates body composition, insulin sensitivity, epigenetics, and gut microbiota intergenerationally in rats. FASEB J. 2021;35(9):e21847. https://doi.org/10.1096/fj.202100198RR.

    Article  CAS  PubMed  Google Scholar 

  71. Ng SF, Lin RCY, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature. 2010;467(7318):963–6. https://doi.org/10.1038/nature09491.

    Article  CAS  PubMed  Google Scholar 

  72. Fullston T, McPherson NO, Owens JA, Kang WX, Sandeman LY, Lane M. Paternal obesity induces metabolic and sperm disturbances in male offspring that are exacerbated by their exposure to an “obesogenic” diet. Physiol Rep. 2015;3(3):e12336. https://doi.org/10.14814/phy2.12336.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fullston T, Teague EMCO, Palmer NO, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013;27(10):4226–43. https://doi.org/10.1096/fj.12-224048.

    Article  CAS  PubMed  Google Scholar 

  74. Wei S, Luo S, Zhang H, Li Y, Zhao J. Paternal high-fat diet altered SETD2 gene methylation in sperm of F0 and F1 mice. Genes Nutr. 2023;18(1):12. https://doi.org/10.1186/s12263-023-00731-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gong P, Bailbé D, Bianchi L, et al. Paternal high-protein diet programs offspring insulin sensitivity in a sex-specific manner. Biomolecules. 2021;11(5):751. https://doi.org/10.3390/biom11050751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shrestha A, Dellett SK, Yang J, Sharma U, Ramalingam L. Effects of fish oil supplementation on reducing the effects of paternal obesity and preventing fatty liver in offspring. Nutrients. 2023;15(24):5038. https://doi.org/10.3390/nu15245038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sanchez-Garrido MA, Ruiz-Pino F, Velasco I, et al. Intergenerational influence of paternal obesity on metabolic and reproductive health parameters of the offspring: male-preferential impact and involvement of kiss1-mediated pathways. Endocrinology. 2018;159(2):1005–18. https://doi.org/10.1210/en.2017-00705.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang X, Dong Y, Sun G, et al. Paternal programming of liver function and lipid profile induced by a paternal pre-conceptional unhealthy diet: potential association with altered gut microbiome composition. Kidney Blood Press Res. 2019;44(1):133–48. https://doi.org/10.1159/000497487.

    Article  CAS  PubMed  Google Scholar 

  79. Watkins AJ, Dias I, Tsuro H, et al. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc Natl Acad Sci. 2018;115(40):10064–9. https://doi.org/10.1073/pnas.1806333115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Furse S, Morgan HL, Koulman A, Watkins AJ. Characterisation of the paternal influence on intergenerational offspring cardiac and brain lipid homeostasis in mice. Int J Mol Sci. 2023;24(3):1814. https://doi.org/10.3390/ijms24031814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morgan HL, Furse S, Dias IHK, et al. Paternal low protein diet perturbs inter-generational metabolic homeostasis in a tissue-specific manner in mice. Commun Biol. 2022;5(1):929. https://doi.org/10.1038/s42003-022-03914-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kaati G, Bygren L, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet. 2002;10(11):682–8. https://doi.org/10.1038/sj.ejhg.5200859.

    Article  CAS  PubMed  Google Scholar 

  83. Pérez Lugo MI, Salas ML, Shrestha A, Ramalingam L. Fish oil improves offspring metabolic health of paternal obese mice by targeting adipose tissue. Biomolecules. 2024;14(4):418. https://doi.org/10.3390/biom14040418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xiong L, Dorus S, Ramalingam L. Role of fish oil in preventing paternal obesity and improving offspring skeletal muscle health. Biomedicines. 2023;11(12):3120. https://doi.org/10.3390/biomedicines11123120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shi Q, Liu X, Fan X, Wang R, Qi K. Paternal dietary ratio of n-6: n-3 polyunsaturated fatty acids programs offspring leptin expression and gene imprinting in mice. Front Nutr. 2022;9:1043876. https://doi.org/10.3389/fnut.2022.1043876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li M, Shi Q, Jiang X, et al. Paternal pre-pregnancyal diet enriched with n-3 polyunsaturated fatty acids affects offspring brain function in mice. Front Nutr. 2022;9:969848. https://doi.org/10.3389/fnut.2022.969848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tomar A, Gomez-Velazquez M, Gerlini R, et al. Epigenetic inheritance of diet-induced and sperm-borne mitochondrial RNAs. Nature. 2024;630(8017):720–7. https://doi.org/10.1038/s41586-024-07472-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hernández-Saavedra D, Markunas C, Takahashi H, et al. Maternal exercise and paternal exercise induce distinct metabolite signatures in offspring tissues. Diabetes. 2022;71(10):2094–105. https://doi.org/10.2337/db22-0341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stanford KI, Rasmussen M, Baer LA, et al. Paternal exercise improves glucose metabolism in adult offspring. Diabetes. 2018;67(12):2530–40. https://doi.org/10.2337/db18-0667.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zheng J, Alves-Wagner AB, Stanford KI, et al. Maternal and paternal exercise regulate offspring metabolic health and beta cell phenotype. BMJ Open Diabetes Res Care. 2020;8(1):e000890. https://doi.org/10.1136/bmjdrc-2019-000890.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Krout D, Roemmich JN, Bundy A, Garcia RA, Yan L, Claycombe-Larson KJ. Paternal exercise protects mouse offspring from high-fat-diet-induced type 2 diabetes risk by increasing skeletal muscle insulin signaling. J Nutr Biochem. 2018;57:35–44. https://doi.org/10.1016/j.jnutbio.2018.03.013.

    Article  CAS  PubMed  Google Scholar 

  92. Costa-Júnior JM, Ferreira SM, Kurauti MA, et al. Paternal exercise improves the metabolic health of offspring via epigenetic modulation of the germline. Int J Mol Sci. 2021;23(1):1. https://doi.org/10.3390/ijms23010001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Murashov AK, Pak ES, Koury M, et al. Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. FASEB J. 2016;30(2):775–84. https://doi.org/10.1096/fj.15-274274.

    Article  CAS  PubMed  Google Scholar 

  94. Belladelli F, Basran S, Eisenberg ML. Male fertility and physical exercise. World J Mens Health. 2023;41(3):482. https://doi.org/10.5534/wjmh.220199.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Short AK, Yeshurun S, Powell R, et al. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety. Transl Psychiatry. 2017;7(5):e1114–e1114. https://doi.org/10.1038/tp.2017.82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Spindler C, Segabinazi E, Meireles AFD, et al. Paternal physical exercise modulates global DNA methylation status in the hippocampus of male rat offspring. Neural Regen Res. 2019;14(3):491. https://doi.org/10.4103/1673-5374.245473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mega F, De Meireles ALF, Piazza FV, et al. Paternal physical exercise demethylates the hippocampal DNA of male pups without modifying the cognitive and physical development. Behav Brain Res. 2018;348:1–8. https://doi.org/10.1016/j.bbr.2018.03.040.

    Article  CAS  PubMed  Google Scholar 

  98. Yin MM, Wang W, Sun J, et al. Paternal treadmill exercise enhances spatial learning and memory related to hippocampus among male offspring. Behav Brain Res. 2013;253:297–304. https://doi.org/10.1016/j.bbr.2013.07.040.

    Article  CAS  PubMed  Google Scholar 

  99. Swinford-Jackson SE, Fant B, Wimmer ME, et al. Cocaine-induced changes in sperm Cdkn1a methylation are associated with cocaine resistance in male offspring. J Neurosci. 2022;42(14):2905–16. https://doi.org/10.1523/JNEUROSCI.3172-20.2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wimmer ME, Briand LA, Fant B, et al. Paternal cocaine taking elicits epigenetic remodeling and memory deficits in male progeny. Mol Psychiatry. 2017;22(11):1641–50. https://doi.org/10.1038/mp.2017.8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yaw AM, Glass JD, Prosser RA, Caldwell HK. Paternal cocaine in mice alters social behavior and brain oxytocin receptor density in first generation offspring. Neuroscience. 2022;485:65–77. https://doi.org/10.1016/j.neuroscience.2022.01.010.

    Article  CAS  PubMed  Google Scholar 

  102. Rich MT, Worobey SJ, Mankame S, Pang ZP, Swinford-Jackson SE, Pierce RC. Sex-dependent fear memory impairment in cocaine-sired rat offspring. Sci Adv. 2023;9(42):eadf6039. https://doi.org/10.1126/sciadv.adf6039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cui J, Huang N, Fan G, et al. Paternal cocaine-seeking motivation defines offspring’s vulnerability to addiction by down-regulating GABAergic GABRG3 in the ventral tegmental area. Transl Psychiatry. 2024;14(1):107. https://doi.org/10.1038/s41398-024-02835-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huang N, Cui J, Fan G, et al. Transcriptomic effects of paternal cocaine-seeking on the reward circuitry of male offspring. Transl Psychiatry. 2024;14(1):120. https://doi.org/10.1038/s41398-024-02839-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wimmer ME, Vassoler FM, White SL, et al. Impaired cocaine-induced behavioral plasticity in the male offspring of cocaine-experienced sires. Eur J Neurosci. 2019;49(9):1115–26. https://doi.org/10.1111/ejn.14310.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Azadi M, Moazen P, Wiskerke J, Semnanian S, Azizi H. pre-pregnancy paternal morphine exposure leads to an impulsive phenotype in male rat progeny. Psychopharmacology. 2021;238(12):3435–46. https://doi.org/10.1007/s00213-021-05962-0.

    Article  CAS  PubMed  Google Scholar 

  107. Vassoler FM, Toorie AM, Teceno DN, et al. Paternal morphine exposure induces bidirectional effects on cocaine versus opioid self-administration. Neuropharmacology. 2020;162:107852. https://doi.org/10.1016/j.neuropharm.2019.107852.

    Article  CAS  PubMed  Google Scholar 

  108. Rohbani K, Sabzevari S, Sadat-Shirazi MS, et al. Parental morphine exposure affects repetitive grooming actions and marble burying behavior in the offspring: potential relevance for obsessive-compulsive like behavior. Eur J Pharmacol. 2019;865:172757. https://doi.org/10.1016/j.ejphar.2019.172757.

    Article  CAS  PubMed  Google Scholar 

  109. Sabzevari S, Rohbani K, Sadat-Shirazi MS, et al. Morphine exposure before conception affects anxiety-like behavior and CRF level (in the CSF and plasma) in the adult male offspring. Brain Res Bull. 2019;144:122–31. https://doi.org/10.1016/j.brainresbull.2018.11.022.

    Article  CAS  PubMed  Google Scholar 

  110. Sadat-Shirazi MS, Asgari P, Mahboubi S, et al. Effect of morphine exposure on novel object memory of the offspring: the role of histone H3 and ΔFosB. Brain Res Bull. 2020;156:141–9. https://doi.org/10.1016/j.brainresbull.2020.01.011.

    Article  CAS  PubMed  Google Scholar 

  111. Brynildsen JK, Sanchez V, Yohn NL, Carpenter MD, Blendy JA. Sex-specific transgenerational effects of morphine exposure on reward and affective behaviors. Behav Brain Res. 2020;395:112842. https://doi.org/10.1016/j.bbr.2020.112842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ellis AS, Toussaint AB, Knouse MC, et al. Paternal morphine self-administration produces object recognition memory deficits in female, but not male offspring. Psychopharmacology. 2020;237(4):1209–21. https://doi.org/10.1007/s00213-019-05450-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zeid D, Toussaint AB, Dressler CC, et al. Paternal morphine exposure in rats reduces social play in adolescent male progeny without affecting drug-taking behavior in juvenile males or female offspring. Mol Cell Neurosci. 2023;126:103877. https://doi.org/10.1016/j.mcn.2023.103877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li Z, Liu D, Wang G, et al. METH exposure alters sperm DNA methylation in F0 mice and mPFC transcriptome in male F1 mice. Psychopharmacology. 2024;241(5):897–911. https://doi.org/10.1007/s00213-023-06516-2.

    Article  CAS  PubMed  Google Scholar 

  115. Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci. 2017;18(3):147–57. https://doi.org/10.1038/nrn.2016.183.

    Article  CAS  PubMed  Google Scholar 

  116. Febbraro F, Andersen HHB, Kitt MM, Willnow TE. Spatially and temporally distinct patterns of expression for VPS10P domain receptors in human cerebral organoids. Front Cell Dev Biol. 2023;11:1229584. https://doi.org/10.3389/fcell.2023.1229584.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Fan Y, Li Z, Zheng Y, et al. Sex-specific neurobehavioural outcomes and brain stimulation pattern in adult offspring paternally exposed to methamphetamine. Addict Biol. 2022;27(3):e13175. https://doi.org/10.1111/adb.13175.

    Article  CAS  PubMed  Google Scholar 

  118. Zheng Y, Liu D, Guo H, et al. Paternal methamphetamine exposure induces higher sensitivity to methamphetamine in male offspring through driving ADRB1 on CaMKII-positive neurons in mPFC. Transl Psychiatry. 2023;13(1):324. https://doi.org/10.1038/s41398-023-02624-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Slotkin TA, Levin ED, Seidler FJ. Paternal cannabis exposure prior to mating, but not δ9-tetrahydrocannabinol, elicits deficits in dopaminergic synaptic activity in the offspring. Toxicol Sci. 2021;184(2):252–64. https://doi.org/10.1093/toxsci/kfab117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schrott R, Acharya K, Itchon-Ramos N, et al. Cannabis use is associated with potentially heritable widespread changes in autism candidate gene DLGAP2 DNA methylation in sperm. Epigenetics. 2020;15(1–2):161–73. https://doi.org/10.1080/15592294.2019.1656158.

    Article  PubMed  Google Scholar 

  121. Holloway ZR, Hawkey AB, Torres AK, et al. Paternal cannabis extract exposure in rats: pre-pregnancy timing effects on neurodevelopmental behavior in offspring. Neurotoxicology. 2020;81:180–8. https://doi.org/10.1016/j.neuro.2020.10.007.

    Article  CAS  PubMed  Google Scholar 

  122. Slotkin TA, Skavicus S, Levin ED, Seidler FJ. Paternal Δ9-tetrahydrocannabinol exposure prior to mating elicits deficits in cholinergic synaptic function in the offspring. Toxicol Sci. 2020;174(2):210–7. https://doi.org/10.1093/toxsci/kfaa004.

    Article  CAS  PubMed  Google Scholar 

  123. Holloway ZR, Hawkey AB, Pippin E, et al. Paternal factors in neurodevelopmental toxicology: THC exposure of male rats causes long-lasting neurobehavioral effects in their offspring. Neurotoxicology. 2020;78:57–63. https://doi.org/10.1016/j.neuro.2020.01.009.

    Article  CAS  PubMed  Google Scholar 

  124. Metayer C, Scelo G, Kang AY, et al. A task-based assessment of parental occupational exposure to organic solvents and other compounds and the risk of childhood leukemia in California. Environ Res. 2016;151:174–83. https://doi.org/10.1016/j.envres.2016.06.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Godschalk R, Remels A, Hoogendoorn C, et al. Paternal exposure to environmental chemical stress affects male offspring’s hepatic mitochondria. Toxicol Sci. 2018;162(1):241–50. https://doi.org/10.1093/toxsci/kfx246.

    Article  CAS  PubMed  Google Scholar 

  126. Zhang W, Yang J, Lv Y, Li S, Qiang M. Paternal benzo[a]pyrene exposure alters the sperm DNA methylation levels of imprinting genes in F0 generation mice and their unexposed F1–2 male offspring. Chemosphere. 2019;228:586–94. https://doi.org/10.1016/j.chemosphere.2019.04.092.

    Article  CAS  PubMed  Google Scholar 

  127. Spycher BD, Lupatsch JE, Huss A, et al. Parental occupational exposure to benzene and the risk of childhood cancer: a census-based cohort study. Environ Int. 2017;108:84–91. https://doi.org/10.1016/j.envint.2017.07.022.

    Article  CAS  PubMed  Google Scholar 

  128. Heck JE, He D, Contreras ZA, Ritz B, Olsen J, Hansen J. Parental occupational exposure to benzene and the risk of childhood and adolescent acute lymphoblastic leukaemia: a population-based study. Occup Environ Med. 2019;76(8):527–9. https://doi.org/10.1136/oemed-2019-105738.

    Article  PubMed  Google Scholar 

  129. Leader J, Mínguez-Alarcón L, Williams PL, et al. Paternal and maternal pre-pregnancy and maternal pregnancy urinary phthalate metabolite and BPA concentrations in relation to child behavior. Environ Int. 2024;183: 108337. https://doi.org/10.1016/j.envint.2023.108337.

    Article  CAS  PubMed  Google Scholar 

  130. Messerlian C, Bellinger D, Mínguez-Alarcón L, et al. Paternal and maternal pre-pregnancy urinary phthalate metabolite concentrations and child behavior. Environ Res. 2017;158:720–8. https://doi.org/10.1016/j.envres.2017.07.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Leader J, Mínguez-Alarcón L, Williams PL, et al. Associations of parental pre-pregnancy and maternal pregnancy urinary phthalate biomarker and bisphenol-a concentrations with child eating behaviors. Int J Hyg Environ Health. 2024;257: 114334. https://doi.org/10.1016/j.ijheh.2024.114334.

    Article  CAS  PubMed  Google Scholar 

  132. Leader J, Mínguez‐Alarcón L, Williams PL, et al. Paternal and maternal pre-pregnancy and maternal pregnancy urinary concentrations of parabens in relation to child behavior. Andrology. 2023;n/a(n/a):andr.13576. https://doi.org/10.1111/andr.13576

  133. Skarha J, Messerlian C, Bellinger D, et al. Parental pre-pregnancy and prenatal urinary bisphenol A and paraben concentrations and child behavior. Environ Epidemiol. 2020;4(1): e082. https://doi.org/10.1097/EE9.0000000000000082.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Rahman MS, Pang WK, Ryu DY, Park YJ, Pang MG. Multigenerational and transgenerational impact of paternal bisphenol A exposure on male fertility in a mouse model. Hum Reprod. 2020;35(8):1740–52. https://doi.org/10.1093/humrep/deaa139.

    Article  CAS  PubMed  Google Scholar 

  135. Omidakhsh N, Hansen J, Ritz B, et al. Parental occupation and risk of childhood retinoblastoma in Denmark. J Occup Environ Med. 2021;63(3):256–61. https://doi.org/10.1097/JOM.0000000000002120.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Rossides M, Kampitsi CE, Talbäck M, et al. Risk of cancer in children of parents occupationally exposed to hydrocarbon solvents and engine exhaust fumes: a register-based nested case–control study from Sweden (1960–2015). Environ Health Perspect. 2022;130(7): 077002. https://doi.org/10.1289/EHP11035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Onyije FM, Olsson A, Erdmann F, et al. Parental occupational exposure to combustion products, metals, silica and asbestos and risk of childhood leukaemia: findings from the Childhood Cancer and Leukaemia International Consortium (CLIC). Environ Int. 2022;167: 107409. https://doi.org/10.1016/j.envint.2022.107409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Patel DM, Jones RR, Booth BJ, et al. parental occupational exposure to pesticides, animals, and organic dust and risk of childhood leukemia and central nervous system tumors: findings from the International Childhood Cancer Cohort Consortium (I4C). Int J Cancer. 2020;146(4):943–52. https://doi.org/10.1002/ijc.32388.

    Article  CAS  PubMed  Google Scholar 

  139. Volk J, Heck JE, Schmiegelow K, Hansen J. Risk of selected childhood cancers and parental employment in painting and printing industries: a register-based case-control study in Denmark 1968–2015. Scand J Work Environ Health. 2019;45(5):475–82. https://doi.org/10.5271/sjweh.3811.

    Article  PubMed  Google Scholar 

  140. Rossides M, Kampitsi C, Talbäck M, Wiebert P, Feychting M, Tettamanti G. Childhood cancer risk in offspring of parents occupationally exposed to dusts: a register-based nested case-control study from Sweden of 5 decades. Cancer. 2022;128(8):1637–48. https://doi.org/10.1002/cncr.34116.

    Article  PubMed  Google Scholar 

  141. Rossides M, Mogensen H, Kampitsi CE, et al. Parental occupational exposure to metals and risk of cancer in the offspring: a register-based case-control study from Sweden. Eur J Cancer. 2023;191:113243. https://doi.org/10.1016/j.ejca.2023.113243.

    Article  CAS  PubMed  Google Scholar 

  142. Pape K, Svanes C, Sejbæk CS, et al. Parental occupational exposure pre- and post-conception and development of asthma in offspring. Int J Epidemiol. 2021;49(6):1856–69. https://doi.org/10.1093/ije/dyaa085.

    Article  PubMed  Google Scholar 

  143. Yoshizaki K, Kimura R, Kobayashi H, et al. Paternal age affects offspring via an epigenetic mechanism involving REST/NRSF. EMBO Rep. 2021;22(2): e51524. https://doi.org/10.15252/embr.202051524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet. 2014;10(7): e1004458. https://doi.org/10.1371/journal.pgen.1004458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cao M, Shao X, Chan P, et al. High-resolution analyses of human sperm dynamic methylome reveal thousands of novel age-related epigenetic alterations. Clin Epigenetics. 2020;12(1):192. https://doi.org/10.1186/s13148-020-00988-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bernhardt L, Dittrich M, Prell A, et al. Age-related methylation changes in the human sperm epigenome. Aging. 2023;15(5):1257–78. https://doi.org/10.18632/aging.204546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Denomme MM, McCallie BR, Haywood ME, Parks JC, Schoolcraft WB, Katz-Jaffe MG. Paternal aging impacts expression and epigenetic markers as early as the first embryonic tissue lineage differentiation. Hum Genomics. 2024;18(1):32. https://doi.org/10.1186/s40246-024-00599-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Denomme MM, Haywood ME, Parks JC, Schoolcraft WB, Katz-Jaffe MG. The inherited methylome landscape is directly altered with paternal aging and associated with offspring neurodevelopmental disorders. Aging Cell. 2020;19(8): e13178. https://doi.org/10.1111/acel.13178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hultman CM, Sandin S, Levine SZ, Lichtenstein P, Reichenberg A. Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol Psychiatry. 2011;16(12):1203–12. https://doi.org/10.1038/mp.2010.121.

    Article  CAS  PubMed  Google Scholar 

  150. Oldereid NB, Wennerholm UB, Pinborg A, et al. The effect of paternal factors on perinatal and paediatric outcomes: a systematic review and meta-analysis. Hum Reprod Update. 2018;24(3):320–89. https://doi.org/10.1093/humupd/dmy005.

    Article  PubMed  Google Scholar 

  151. Urhoj SK, Mortensen LH, Nybo AA. Advanced paternal age and risk of musculoskeletal congenital anomalies in offspring. Birth Defects Res B Dev Reprod Toxicol. 2015;104(6):273–80. https://doi.org/10.1002/bdrb.21167.

    Article  CAS  PubMed  Google Scholar 

  152. Yin S, Zhou Y, Zhao C, et al. Association of paternal age alone and combined with maternal age with perinatal outcomes: a prospective multicenter cohort study in China. J Epidemiol Glob Health. 2024;14(1):120–30. https://doi.org/10.1007/s44197-023-00175-4.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Urhoj SK, Jespersen LN, Nissen M, Mortensen LH, Nybo Andersen AM. Advanced paternal age and mortality of offspring under 5 years of age: a register-based cohort study. Hum Reprod. 2014;29(2):343–50. https://doi.org/10.1093/humrep/det399.

    Article  CAS  PubMed  Google Scholar 

  154. Lan KC, Chiang HJ, Huang TL, et al. Association between paternal age and risk of schizophrenia: a nationwide population-based study. J Assist Reprod Genet. 2021;38(1):85–93. https://doi.org/10.1007/s10815-020-01936-x.

    Article  PubMed  Google Scholar 

  155. Wang SH, Wu CS, Hsu LY, et al. Paternal age and 13 psychiatric disorders in the offspring: a population-based cohort study of 7 million children in Taiwan. Mol Psychiatry. 2022;27(12):5244–54. https://doi.org/10.1038/s41380-022-01753-x.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Gau CC, Lee HJ, Lu HY, et al. Association of advanced paternal age with lung function at school age. Respir Res. 2022;23(1):259. https://doi.org/10.1186/s12931-022-02178-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mao Y, Zhao Y, Luo S, et al. Advanced paternal age increased metabolic risks in mice offspring. Biochim Biophys Acta Mol Basis Dis. 2022;1868(5): 166355. https://doi.org/10.1016/j.bbadis.2022.166355.

    Article  CAS  PubMed  Google Scholar 

  158. Guo Y, Bai D, Liu W, et al. Altered sperm tsRNAs in aged male contribute to anxiety-like behavior in offspring. Aging Cell. 2021;20(9): e13466. https://doi.org/10.1111/acel.13466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rodrigo L. Sperm genetic abnormalities and their contribution to embryo aneuploidy & miscarriage. Best Pract Res Clin Endocrinol Metab. 2020;34(6): 101477. https://doi.org/10.1016/j.beem.2020.101477.

    Article  CAS  PubMed  Google Scholar 

  160. Evenson DP, Djira G, Kasperson K, Christianson J. Relationships between the age of 25,445 men attending infertility clinics and sperm chromatin structure assay (SCSA®) defined sperm DNA and chromatin integrity. Fertil Steril. 2020;114(2):311–20. https://doi.org/10.1016/j.fertnstert.2020.03.028.

    Article  CAS  PubMed  Google Scholar 

  161. De Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020–32. https://doi.org/10.1136/gutjnl-2021-326789.

    Article  CAS  PubMed  Google Scholar 

  162. Argaw-Denboba A, Schmidt TSB, Di Giacomo M, et al. Paternal microbiome perturbations impact offspring fitness. Nature. 2024;629(8012):652–9. https://doi.org/10.1038/s41586-024-07336-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Salas-Huetos A, James ER, Broberg DS, Aston KI, Carrell DT, Jenkins TG. The combined effect of obesity and aging on human sperm DNA methylation signatures: inclusion of BMI in the paternal germ line age prediction model. Sci Rep. 2020;10(1):15409. https://doi.org/10.1038/s41598-020-71979-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.C. and J.W.; writing—original draft preparation, X.W. and W.Z.; writing—review and editing, X.W. and J.W. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jianfei Weng.

Ethics declarations

Ethics approval

This study did not require ethical approval and was based on publicly available studies.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhang, W., Chen, H. et al. Multifaceted paternal exposures before conception and their epigenetic impact on offspring. J Assist Reprod Genet 41, 2931–2951 (2024). https://doi.org/10.1007/s10815-024-03243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-024-03243-1

Keywords