Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation and function of insulin and insulin-like growth factor receptor signalling

Abstract

Receptors of insulin and insulin-like growth factors (IGFs) are receptor tyrosine kinases whose signalling controls multiple aspects of animal physiology throughout life. In addition to regulating metabolism and growth, insulin–IGF receptor signalling has recently been linked to a variety of new, cell type-specific functions. In the last century, key questions have focused on how structural differences of insulin and IGFs affect receptor activation, and how insulin–IGF receptor signalling translates into pleiotropic biological functions. Technological advances such as cryo-electron microscopy have provided a detailed understanding of how native and engineered ligands activate insulin–IGF receptors. In this Review, we highlight recent structural and functional insights into the activation of insulin–IGF receptors, and summarize new agonists and antagonists developed for intervening in the activation of insulin–IGF receptor signalling. Furthermore, we discuss recently identified regulatory mechanisms beyond ligand–receptor interactions and functions of insulin–IGF receptor signalling in diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and domain organization of insulin, IGFs and the IR family.
Fig. 2: Activation mechanisms of IR.
Fig. 3: Activation mechanisms of IGF1R.
Fig. 4: Activation of IRR.
Fig. 5: Regulation of insulin–IGF receptor signalling.
Fig. 6: Interventions of insulin–IGF receptor signalling through non-native ligands.

Similar content being viewed by others

References

  1. Petersen, M. C. & Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Santoro, A., McGraw, T. E. & Kahn, B. B. Insulin action in adipocytes, adipose remodeling, and systemic effects. Cell Metab. 33, 748–757 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mathieu, C., Martens, P. J. & Vangoitsenhoven, R. One hundred years of insulin therapy. Nat. Rev. Endocrinol. 17, 715–725 (2021).

    Article  PubMed  Google Scholar 

  4. Boucher, J., Kleinridders, A. & Kahn, C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 6, a009191 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. White, M. F. & Kahn, C. R. Insulin action at a molecular level — 100 years of progress. Mol. Metab. 52, 101304 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kasuga, M., Karlsson, F. A. & Kahn, C. R. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 215, 185–187 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Haeusler, R. A., McGraw, T. E. & Accili, D. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol. 19, 31–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Kasuga, M., Zick, Y., Blithe, D. L., Crettaz, M. & Kahn, C. R. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature 298, 667–669 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. White, M. F., Maron, R. & Kahn, C. R. Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 318, 183–186 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, X. J. et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352, 73–77 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Siddle, K. Signalling by insulin and IGF receptors: supporting acts and new players. J. Mol. Endocrinol. 47, R1–R10 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. De Meyts, P. in Endotext (eds Feingold, K. R. et al.) (MDText, 2016).

  13. Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat. Genet. 12, 106–109 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Joshi, R. L. et al. Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J. 15, 1542–1547 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bruning, J. C. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Lauro, D. et al. Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nat. Genet. 20, 294–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Bluher, M. et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell 3, 25–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Michael, M. D. et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6, 87–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kulkarni, R. N. et al. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Guerra, C. et al. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J. Clin. Invest. 108, 1205–1213 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bruning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72 (1993).

    CAS  PubMed  Google Scholar 

  23. Kitamura, T. et al. Preserved pancreatic β-cell development and function in mice lacking the insulin receptor-related receptor. Mol. Cell Biol. 21, 5624–5630 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nef, S. et al. Testis determination requires insulin receptor family function in mice. Nature 426, 291–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Barbieri, M., Bonafe, M., Franceschi, C. & Paolisso, G. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am. J. Physiol. Endocrinol. Metab. 285, E1064–E1071 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Lagueux, M., Lwoff, L., Meister, M., Goltzene, F. & Hoffmann, J. A. cDNAs from neurosecretory cells of brains of Locusta migratoria (Insecta, Orthoptera) encoding a novel member of the superfamily of insulins. Eur. J. Biochem. 187, 249–254 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Viola, C. M. et al. Structural conservation of insulin/IGF signalling axis at the insulin receptors level in Drosophila and humans. Nat. Commun. 14, 6271 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smykal, V. et al. Complex evolution of insect insulin receptors and homologous decoy receptors, and functional significance of their multiplicity. Mol. Biol. Evol. 37, 1775–1789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Altindis, E. et al. Viral insulin-like peptides activate human insulin and IGF-1 receptor signaling: a paradigm shift for host-microbe interactions. Proc. Natl Acad. Sci. USA 115, 2461–2466 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ullrich, A. et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313, 756–761 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Ebina, Y. et al. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40, 747–758 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Ullrich, A. et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 5, 2503–2512 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shier, P. & Watt, V. M. Primary structure of a putative receptor for a ligand of the insulin family. J. Biol. Chem. 264, 14605–14608 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi, E. & Bai, X. C. The activation mechanism of the insulin receptor: a structural perspective. Annu. Rev. Biochem. 92, 247–272 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Massague, J., Pilch, P. F. & Czech, M. P. Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries. Proc. Natl Acad. Sci. USA 77, 7137–7141 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sparrow, L. G. et al. The disulfide bonds in the C-terminal domains of the human insulin receptor ectodomain. J. Biol. Chem. 272, 29460–29467 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Bravo, D. A., Gleason, J. B., Sanchez, R. I., Roth, R. A. & Fuller, R. S. Accurate and efficient cleavage of the human insulin proreceptor by the human proprotein-processing protease furin. Characterization and kinetic parameters using the purified, secreted soluble protease expressed by a recombinant baculovirus. J. Biol. Chem. 269, 25830–25837 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Bajaj, M., Waterfield, M. D., Schlessinger, J., Taylor, W. R. & Blundell, T. On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors. Biochim. Biophys. Acta 916, 220–226 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Schaffer, L. & Ljungqvist, L. Identification of a disulfide bridge connecting the α-subunits of the extracellular domain of the insulin receptor. Biochem. Biophys. Res. Commun. 189, 650–653 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Lawrence, M. C. Understanding insulin and its receptor from their three-dimensional structures. Mol. Metab. 52, 101255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, J., Wu, J., Hall, C., Bai, X. C. & Choi, E. Molecular basis for the role of disulfide-linked αCTs in the activation of insulin-like growth factor 1 receptor and insulin receptor. eLife 11, e81286 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rosenfeld, L. Insulin: discovery and controversy. Clin. Chem. 48, 2270–2288 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Banting, F. G., Best, C. H., Collip, J. B., Campbell, W. R. & Fletcher, A. A. Pancreatic extracts in the treatment of diabetes mellitus. 1922. Indian J. Med. Res. 125, 141–146 (2007).

    CAS  PubMed  Google Scholar 

  45. Gorai, B. & Vashisth, H. Progress in simulation studies of insulin structure and function. Front. Endocrinol. 13, 908724 (2022).

    Article  Google Scholar 

  46. Sanger, F. & Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochem. J. 49, 463–481 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sanger, F. & Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 49, 481–490 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adams, M. J. et al. Structure of rhombohedral 2 zinc insulin crystals. Nature 224, 491–495 (1969).

    Article  CAS  Google Scholar 

  49. Mayer, J. P., Zhang, F. & DiMarchi, R. D. Insulin structure and function. Biopolymers 88, 687–713 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Weiss, M., Steiner, D. F. & Philipson, L. H. et al. in Endotext (eds Feingold, K. R. et al.) (MDText, 2014).

  51. Palivec, V. et al. Computational and structural evidence for neurotransmitter-mediated modulation of the oligomeric states of human insulin in storage granules. J. Biol. Chem. 292, 8342–8355 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mathieu, C., Gillard, P. & Benhalima, K. Insulin analogues in type 1 diabetes mellitus: getting better all the time. Nat. Rev. Endocrinol. 13, 385–399 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Omar-Hmeadi, M. & Idevall-Hagren, O. Insulin granule biogenesis and exocytosis. Cell Mol. Life Sci. 78, 1957–1970 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Salmon, W. D. Jr & Daughaday, W. H. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J. Lab. Clin. Med. 49, 825–836 (1957).

    CAS  PubMed  Google Scholar 

  55. Daughaday, W. H. et al. Somatomedin: proposed designation for sulphation factor. Nature 235, 107 (1972).

    Article  CAS  PubMed  Google Scholar 

  56. Rinderknecht, E. & Humbel, R. E. Amino-terminal sequences of two polypeptides from human serum with nonsuppressible insulin-like and cell-growth-promoting activities: evidence for structural homology with insulin B chain. Proc. Natl Acad. Sci. USA 73, 4379–4381 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Terasawa, H. et al. Solution structure of human insulin-like growth factor II; recognition sites for receptors and binding proteins. EMBO J. 13, 5590–5597 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nagao, H. et al. Distinct signaling by insulin and IGF-1 receptors and their extra- and intracellular domains. Proc. Natl Acad. Sci. USA 118, e2019474118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Seino, S. & Bell, G. I. Alternative splicing of human insulin receptor messenger RNA. Biochem. Biophys. Res. Commun. 159, 312–316 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Frasca, F. et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol. Cell Biol. 19, 3278–3288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Belfiore, A. et al. Insulin receptor isoforms in physiology and disease: an updated view. Endocr. Rev. 38, 379–431 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pandini, G. et al. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J. Biol. Chem. 277, 39684–39695 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Slaaby, R. et al. Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J. Biol. Chem. 281, 25869–25874 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Benyoucef, S., Surinya, K. H., Hadaschik, D. & Siddle, K. Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem. J. 403, 603–613 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hexnerova, R. et al. Probing receptor specificity by sampling the conformational space of the insulin-like growth factor II C-domain. J. Biol. Chem. 291, 21234–21245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Krizkova, K. et al. Insulin-insulin-like growth factors hybrids as molecular probes of hormone:receptor binding specificity. Biochemistry 55, 2903–2913 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Schaffer, L. A model for insulin binding to the insulin receptor. Eur. J. Biochem. 221, 1127–1132 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Bayne, M. L. et al. The C region of human insulin-like growth factor (IGF) I is required for high affinity binding to the type 1 IGF receptor. J. Biol. Chem. 264, 11004–11008 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Blyth, A. J., Kirk, N. S. & Forbes, B. E. Understanding IGF-II action through insights into receptor binding and activation. Cells 9, 2276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alvino, C. L. et al. A novel approach to identify two distinct receptor binding surfaces of insulin-like growth factor II. J. Biol. Chem. 284, 7656–7664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gauguin, L. et al. Alanine scanning of a putative receptor binding surface of insulin-like growth factor-I. J. Biol. Chem. 283, 20821–20829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. de Meyts, P., Roth, J., Neville, D. M. Jr, Gavin, J. R. III & Lesniak, M. A. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem. Biophys. Res. Commun. 55, 154–161 (1973).

    Article  PubMed  Google Scholar 

  73. Nielsen, J. et al. Structural investigations of full-length insulin receptor dynamics and signalling. J. Mol. Biol. 434, 167458 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Christoffersen, C. T. et al. Negative cooperativity in the insulin-like growth factor-I receptor and a chimeric IGF-I/insulin receptor. Endocrinology 135, 472–475 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. De Meyts, P. & Whittaker, J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat. Rev. Drug Discov. 1, 769–783 (2002).

    Article  PubMed  Google Scholar 

  76. Croll, T. I. et al. Higher-resolution structure of the human insulin receptor ectodomain: multi-modal inclusion of the insert domain. Structure 24, 469–476 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gutmann, T., Kim, K. H., Grzybek, M., Walz, T. & Coskun, U. Visualization of ligand-induced transmembrane signaling in the full-length human insulin receptor. J. Cell Biol. 217, 1643–1649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kohanski, R. A. Insulin receptor autophosphorylation. I. Autophosphorylation kinetics of the native receptor and its cytoplasmic kinase domain. Biochemistry 32, 5766–5772 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. An, W. et al. Activation of the insulin receptor by insulin-like growth factor 2. Nat. Commun. 15, 2609 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Uchikawa, E., Choi, E., Shang, G., Yu, H. & Bai, X. C. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. eLife 8, e48630 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gutmann, T. et al. Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. J. Cell Biol. 219, e201907210 (2020).

    Article  PubMed  Google Scholar 

  82. De Meyts, P. Insulin and its receptor: structure, function and evolution. Bioessays 26, 1351–1362 (2004).

    Article  PubMed  Google Scholar 

  83. Kristensen, C. et al. Alanine scanning mutagenesis of insulin. J. Biol. Chem. 272, 12978–12983 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Weis, F. et al. The signalling conformation of the insulin receptor ectodomain. Nat. Commun. 9, 4420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Menting, J. G. et al. How insulin engages its primary binding site on the insulin receptor. Nature 493, 241–245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, J. et al. Synergistic activation of the insulin receptor via two distinct sites. Nat. Struct. Mol. Biol. 29, 357–368 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Scapin, G. et al. Structure of the insulin receptor-insulin complex by single-particle cryo-EM analysis. Nature 556, 122–125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xiong, X. et al. Symmetric and asymmetric receptor conformation continuum induced by a new insulin. Nat. Chem. Biol. 18, 511–519 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kertisova, A. et al. Insulin receptor Arg717 and IGF-1 receptor Arg704 play a key role in ligand binding and in receptor activation. Open Biol. 13, 230142 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Daly, M. E. et al. Acute effects on insulin sensitivity and diurnal metabolic profiles of a high-sucrose compared with a high-starch diet. Am. J. Clin. Nutr. 67, 1186–1196 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Shukla, A. P., Iliescu, R. G., Thomas, C. E. & Aronne, L. J. Food order has a significant impact on postprandial glucose and insulin levels. Diabetes Care 38, e98–e99 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kanaley, J. A., Heden, T. D., Liu, Y. & Fairchild, T. J. Alteration of postprandial glucose and insulin concentrations with meal frequency and composition. Br. J. Nutr. 112, 1484–1493 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, M., Li, J., Lim, G. E. & Johnson, J. D. Is dynamic autocrine insulin signaling possible? A mathematical model predicts picomolar concentrations of extracellular monomeric insulin within human pancreatic islets. PLoS ONE 8, e64860 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Najjar, S. M. & Perdomo, G. Hepatic insulin clearance: mechanism and physiology. Physiology 34, 198–215 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu, Y. et al. How ligand binds to the type 1 insulin-like growth factor receptor. Nat. Commun. 9, 821 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhang, X. et al. Cryo-EM studies of the apo states of human IGF1R. Biochem. Biophys. Res. Commun. 618, 148–152 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Li, J., Choi, E., Yu, H. & Bai, X. C. Structural basis of the activation of type 1 insulin-like growth factor receptor. Nat. Commun. 10, 4567 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhang, X. et al. Visualization of ligand-bound ectodomain assembly in the full-length human IGF-1 3eceptor by cryo-EM single-particle analysis. Structure 28, 555–561 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Surinya, K. H. et al. An investigation of the ligand binding properties and negative cooperativity of soluble insulin-like growth factor receptors. J. Biol. Chem. 283, 5355–5363 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Xu, Y. et al. How IGF-II binds to the human type 1 insulin-like growth factor receptor. Structure 28, 786–798 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hakuno, F. & Takahashi, S. I. IGF1 receptor signaling pathways. J. Mol. Endocrinol. 61, T69–T86 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Xu, Y. et al. How insulin-like growth factor I binds to a hybrid insulin receptor type 1 insulin-like growth factor receptor. Structure 30, 1098–1108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kavran, J. M. et al. How IGF-1 activates its receptor. eLife 3, e03772 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Deyev, I. E. et al. Insulin receptor-related receptor as an extracellular alkali sensor. Cell Metab. 13, 679–689 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Petrenko, A. G., Zozulya, S. A., Deyev, I. E. & Eladari, D. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid-base balance. Biochim. Biophys. Acta 1834, 2170–2175 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Clerk, A. & Sugden, P. H. The insulin receptor family in the heart: new light on old insights. Biosci. Rep. 42, BSR20221212 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, L., Hall, C., Li, J., Choi, E. & Bai, X. C. Structural basis of the alkaline pH-dependent activation of insulin receptor-related receptor. Nat. Struct. Mol. Biol. 30, 661–669 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Suzawa, M. & Bland, M. L. Insulin signaling in development. Development 150, dev201599 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Duguay, S. J., Lai-Zhang, J. & Steiner, D. F. Mutational analysis of the insulin-like growth factor I prohormone processing site. J. Biol. Chem. 270, 17566–17574 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Komatsu, M., Takei, M., Ishii, H. & Sato, Y. Glucose-stimulated insulin secretion: a newer perspective. J. Diabetes Investig. 4, 511–516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Henquin, J. C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 1751–1760 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, J. L., Yakar, S. & LeRoith, D. Mice deficient in liver production of insulin-like growth factor I display sexual dimorphism in growth hormone-stimulated postnatal growth. Endocrinology 141, 4436–4441 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Vu, T. H. & Hoffman, A. R. Promoter-specific imprinting of the human insulin-like growth factor-II gene. Nature 371, 714–717 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Hou, J. C., Min, L. & Pessin, J. E. Insulin granule biogenesis, trafficking and exocytosis. Vitam. Horm. 80, 473–506 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fang, Y. et al. Cytosolic pH is a direct nexus in linking environmental cues with insulin processing and secretion in pancreatic β cells. Cell Metab. 36, 1237–1251 (2024).

    Article  CAS  PubMed  Google Scholar 

  116. Argente, J., Chowen, J. A., Pérez-Jurado, L. A., Frystyk, J. & Oxvig, C. One level up: abnormal proteolytic regulation of IGF activity plays a role in human pathophysiology. EMBO Mol. Med. 9, 1338–1345 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, T. et al. TMED10 mediates the trafficking of insulin-like growth factor 2 along the secretory pathway for myoblast differentiation. Proc. Natl Acad. Sci. USA 120, e2215285120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Allard, J. B. & Duan, C. IGF-binding proteins: why do they exist and why are there so many? Front. Endocrinol. 9, 117 (2018).

    Article  Google Scholar 

  119. Baxter, R. C. & Martin, J. L. Structure of the Mr 140,000 growth hormone-dependent insulin-like growth factor binding protein complex: determination by reconstitution and affinity-labeling. Proc. Natl Acad. Sci. USA 86, 6898–6902 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rajaram, S., Baylink, D. J. & Mohan, S. Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocr. Rev. 18, 801–831 (1997).

    CAS  PubMed  Google Scholar 

  121. Baxter, R. C. Endocrine and cellular physiology and pathology of the insulin-like growth factor acid-labile subunit. Nat. Rev. Endocrinol. 20, 414–425 (2024).

    Article  CAS  PubMed  Google Scholar 

  122. Lewitt, M. S., Saunders, H., Phuyal, J. L. & Baxter, R. C. Complex formation by human insulin-like growth factor-binding protein-3 and human acid-labile subunit in growth hormone-deficient rats. Endocrinology 134, 2404–2409 (1994).

    Article  CAS  PubMed  Google Scholar 

  123. Guler, H. P., Zapf, J., Schmid, C. & Froesch, E. R. Insulin-like growth factors I and II in healthy man. Estimations of half-lives and production rates. Acta Endocrinol. 121, 753–758 (1989).

    CAS  Google Scholar 

  124. Yakar, S. et al. Serum complexes of insulin-like growth factor-1 modulate skeletal integrity and carbohydrate metabolism. FASEB J. 23, 709–719 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Guler, H. P., Zapf, J. & Froesch, E. R. Short-term metabolic effects of recombinant human insulin-like growth factor I in healthy adults. N. Engl. J. Med. 317, 137–140 (1987).

    Article  CAS  PubMed  Google Scholar 

  126. Dauber, A. et al. Mutations in pregnancy-associated plasma protein A2 cause short stature due to low IGF-I availability. EMBO Mol. Med. 8, 363–374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sitar, T., Popowicz, G. M., Siwanowicz, I., Huber, R. & Holak, T. A. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins. Proc. Natl Acad. Sci. USA 103, 13028–13033 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Forbes, B. E. et al. Localization of an insulin-like growth factor (IGF) binding site of bovine IGF binding protein-2 using disulfide mapping and deletion mutation analysis of the C-terminal domain. J. Biol. Chem. 273, 4647–4652 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Neumann, G. M. & Bach, L. A. The N-terminal disulfide linkages of human insulin-like growth factor-binding protein-6 (hIGFBP-6) and hIGFBP-1 are different as determined by mass spectrometry. J. Biol. Chem. 274, 14587–14594 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Brinkman, A., Kortleve, D. J., Zwarthoff, E. C. & Drop, S. L. Mutations in the C-terminal part of insulin-like growth factor (IGF)-binding protein-1 result in dimer formation and loss of IGF binding capacity. Mol. Endocrinol. 5, 987–994 (1991).

    Article  CAS  PubMed  Google Scholar 

  131. Kim, H. et al. Structural basis for assembly and disassembly of the IGF/IGFBP/ALS ternary complex. Nat. Commun. 13, 4434 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hsieh, T., Gordon, R. E., Clemmons, D. R., Busby, W. H. Jr. & Duan, C. Regulation of vascular smooth muscle cell responses to insulin-like growth factor (IGF)-I by local IGF-binding proteins. J. Biol. Chem. 278, 42886–42892 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Ren, H., Yin, P. & Duan, C. IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop. J. Cell Biol. 182, 979–991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, C. et al. IGF binding protein-6 expression in vascular endothelial cells is induced by hypoxia and plays a negative role in tumor angiogenesis. Int. J. Cancer 130, 2003–2012 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Imai, Y. et al. Protease-resistant form of insulin-like growth factor-binding protein 5 is an inhibitor of insulin-like growth factor-I actions on porcine smooth muscle cells in culture. J. Clin. Invest. 100, 2596–2605 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Conover, C. A. et al. Metalloproteinase pregnancy-associated plasma protein A is a critical growth regulatory factor during fetal development. Development 131, 1187–1194 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Liu, C. et al. The metalloproteinase Papp-aa controls epithelial cell quiescence-proliferation transition. eLife 9, e52322 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Conover, C. A. & Oxvig, C. The pregnancy-associated plasma protein-A (PAPP-A) story. Endocr. Rev. 44, 1012–1028 (2023).

    Article  PubMed  Google Scholar 

  140. Lawrence, J. B. et al. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc. Natl Acad. Sci. USA 96, 3149–3153 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Boldt, H. B. et al. The Lin12–Notch repeats of pregnancy-associated plasma protein-A bind calcium and determine its proteolytic specificity. J. Biol. Chem. 279, 38525–38531 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Laursen, L. S. et al. Cell surface targeting of pregnancy-associated plasma protein A proteolytic activity. Reversible adhesion is mediated by two neighboring short consensus repeats. J. Biol. Chem. 277, 47225–47234 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Judge, R. A. et al. Structure of the PAPP-ABP5 complex reveals mechanism of substrate recognition. Nat. Commun. 13, 5500 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kobberø, S. D. et al. Structure of the proteolytic enzyme PAPP-A with the endogenous inhibitor stanniocalcin-2 reveals its inhibitory mechanism. Nat. Commun. 13, 6084 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sridar, J. et al. Cryo-EM structure of human PAPP-A2 and mechanism of substrate recognition. Commun. Chem. 6, 234 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhong, Q. et al. Structural insights into the covalent regulation of PAPP-A activity by proMBP and STC2. Cell Discov. 8, 137 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Oxvig, C. & Conover, C. A. The stanniocalcin–PAPP-A–IGFBP–IGF axis. J. Clin. Endocrinol. Metab. 108, 1624–1633 (2023).

    Article  PubMed  Google Scholar 

  148. Hall, C., Yu, H. & Choi, E. Insulin receptor endocytosis in the pathophysiology of insulin resistance. Exp. Mol. Med. 52, 911–920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wu, J., Park, S. H. & Choi, E. The insulin receptor endocytosis. Prog. Mol. Biol. Transl. Sci. 194, 79–107 (2023).

    Article  PubMed  Google Scholar 

  150. Chen, Y., Huang, L., Qi, X. & Chen, C. Insulin receptor trafficking: consequences for insulin sensitivity and diabetes. Int. J. Mol. Sci. 20, 5007 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Park, J. et al. MAD2-dependent insulin receptor endocytosis regulates metabolic homeostasis. Diabetes 72, 1781–1794 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Najjar, S. M., Caprio, S. & Gastaldelli, A. Insulin clearance in health and disease. Annu. Rev. Physiol. 85, 363–381 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Choi, E. et al. Mitotic regulators and the SHP2–MAPK pathway promote IR endocytosis and feedback regulation of insulin signaling. Nat. Commun. 10, 1473 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Choi, E., Zhang, X., Xing, C. & Yu, H. Mitotic checkpoint regulators control insulin signaling and metabolic homeostasis. Cell 166, 567–581 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yoneyama, Y. et al. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling. eLife 7, e32893 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Poy, M. N. et al. CEACAM1 regulates insulin clearance in liver. Nat. Genet. 30, 270–276 (2002).

    Article  PubMed  Google Scholar 

  157. Soni, P., Lakkis, M., Poy, M. N., Fernstrom, M. A. & Najjar, S. M. The differential effects of pp120 (Ceacam 1) on the mitogenic action of insulin and insulin-like growth factor 1 are regulated by the nonconserved tyrosine 1316 in the insulin receptor. Mol. Cell Biol. 20, 3896–3905 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Grandl, G. et al. Global, neuronal or β cell-specific deletion of inceptor improves glucose homeostasis in male mice with diet-induced obesity. Nat. Metab. 6, 448–457 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ansarullah et al. Inceptor counteracts insulin signalling in β-cells to control glycaemia. Nature 590, 326–331 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Liu, X. et al. Insulin induces insulin receptor degradation in the liver through EphB4. Nat. Metab. 4, 1202–1213 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Fagerholm, S., Ortegren, U., Karlsson, M., Ruishalme, I. & Stralfors, P. Rapid insulin-dependent endocytosis of the insulin receptor by caveolae in primary adipocytes. PLoS ONE 4, e5985 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Yamakawa, D. et al. Primary cilia-dependent lipid raft/caveolin dynamics regulate adipogenesis. Cell Rep. 34, 108817 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Gustavsson, J. et al. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J. 13, 1961–1971 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Kabayama, K. et al. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc. Natl Acad. Sci. USA 104, 13678–13683 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Nystrom, F. H., Chen, H., Cong, L. N., Li, Y. & Quon, M. J. Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol. Endocrinol. 13, 2013–2024 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Imamura, T. et al. Two naturally occurring mutations in the kinase domain of insulin receptor accelerate degradation of the insulin receptor and impair the kinase activity. J. Biol. Chem. 269, 31019–31027 (1994).

    Article  CAS  PubMed  Google Scholar 

  167. Hancock, M. L. et al. Insulin receptor associates with promoters genome-wide and regulates gene expression. Cell 177, 722–736 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Aleksic, T. et al. Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res. 70, 6412–6419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Packham, S. et al. Nuclear translocation of IGF-1R via p150Glued and an importin-β/RanBP2-dependent pathway in cancer cells. Oncogene 34, 2227–2238 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Dall’Agnese, A. et al. The dynamic clustering of insulin receptor underlies its signaling and is disrupted in insulin resistance. Nat. Commun. 13, 7522 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Butkowski, E. G. & Jelinek, H. F. Hyperglycaemia, oxidative stress and inflammatory markers. Redox Rep. 22, 257–264 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Zhou, K. et al. Spatiotemporal regulation of insulin signaling by liquid-liquid phase separation. Cell Discov. 8, 64 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gao, X. K. et al. Phase separation of insulin receptor substrate 1 drives the formation of insulin/IGF-1 signalosomes. Cell Discov. 8, 60 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ahn, M. Y., Katsanakis, K. D., Bheda, F. & Pillay, T. S. Primary and essential role of the adaptor protein APS for recruitment of both c-Cbl and its associated protein CAP in insulin signaling. J. Biol. Chem. 279, 21526–21532 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Monami, G., Emiliozzi, V. & Morrione, A. Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization. J. Cell Physiol. 216, 426–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Vecchione, A., Marchese, A., Henry, P., Rotin, D. & Morrione, A. The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol. Cell Biol. 23, 3363–3372 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Song, R. et al. Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature 494, 375–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Girnita, L. et al. β-arrestin and Mdm2 mediate IGF-1 receptor-stimulated ERK activation and cell cycle progression. J. Biol. Chem. 282, 11329–11338 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Girnita, L., Girnita, A. & Larsson, O. Mdm2-dependent ubiquitination and degradation of the insulin-like growth factor 1 receptor. Proc. Natl Acad. Sci. USA 100, 8247–8252 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nagarajan, A. et al. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nat. Commun. 7, 12639 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tawo, R. et al. The ubiquitin ligase CHIP integrates proteostasis and aging by regulation of insulin receptor turnover. Cell 169, 470–482 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhou, H. L. et al. An enzyme that selectively S-nitrosylates proteins to regulate insulin signaling. Cell 186, 5812–5825 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sehat, B. et al. SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci. Signal. 3, ra10 (2010).

    Article  PubMed  Google Scholar 

  184. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Pilon, M. Revisiting the membrane-centric view of diabetes. Lipids Health Dis. 15, 167 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Stubbs, C. D. & Smith, A. D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta 779, 89–137 (1984).

    Article  CAS  PubMed  Google Scholar 

  187. Ferrara, P. J. et al. Lysophospholipid acylation modulates plasma membrane lipid organization and insulin sensitivity in skeletal muscle. J. Clin. Invest. 131, e135963 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Mitrofanova, A. et al. SMPDL3b modulates insulin receptor signaling in diabetic kidney disease. Nat. Commun. 10, 2692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. McElroy, B., Powell, J. C. & McCarthy, J. V. The insulin-like growth factor 1 (IGF-1) receptor is a substrate for γ-secretase-mediated intramembrane proteolysis. Biochem. Biophys. Res. Commun. 358, 1136–1141 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Kasuga, K., Kaneko, H., Nishizawa, M., Onodera, O. & Ikeuchi, T. Generation of intracellular domain of insulin receptor tyrosine kinase by γ-secretase. Biochem. Biophys. Res. Commun. 360, 90–96 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Meakin, P. J. et al. The β secretase BACE1 regulates the expression of insulin receptor in the liver. Nat. Commun. 9, 1306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Guo, X. et al. Regulation of age-associated insulin resistance by MT1-MMP-mediated cleavage of insulin receptor. Nat. Commun. 13, 3749 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kim, K. et al. γ-Secretase inhibition lowers plasma triglyceride-rich lipoproteins by stabilizing the LDL receptor. Cell Metab. 27, 816–827 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Fujita, M., Takada, Y. K. & Takada, Y. Insulin-like growth factor (IGF) signaling requires αvβ3–IGF1–IGF type 1 receptor (IGF1R) ternary complex formation in anchorage independence, and the complex formation does not require IGF1R and Src activation. J. Biol. Chem. 288, 3059–3069 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Beauvais, D. M. & Rapraeger, A. C. Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation. J. Cell Sci. 123, 3796–3807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Clemmons, D. R. & Maile, L. A. Interaction between insulin-like growth factor-I receptor and αVβ3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs. Mol. Endocrinol. 19, 1–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Tahimic, C. G. et al. Regulation of ligand and shear stress-induced insulin-like growth factor 1 (IGF1) signaling by the integrin pathway. J. Biol. Chem. 291, 8140–8149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Saegusa, J. et al. The direct binding of insulin-like growth factor-1 (IGF-1) to integrin αvβ3 is involved in IGF-1 signaling. J. Biol. Chem. 284, 24106–24114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Oh, Y. et al. Synthesis and characterization of insulin-like growth factor-binding protein (IGFBP)-7. Recombinant human mac25 protein specifically binds IGF-I and -II. J. Biol. Chem. 271, 30322–30325 (1996).

    Article  CAS  PubMed  Google Scholar 

  200. Grotendorst, G. R., Lau, L. F. & Perbal, B. CCN proteins are distinct from and should not be considered members of the insulin-like growth factor-binding protein superfamily. Endocrinology 141, 2254–2256 (2000).

    Article  CAS  PubMed  Google Scholar 

  201. Evdokimova, V. et al. IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors. Sci. Signal. 5, ra92 (2012).

    Article  PubMed  Google Scholar 

  202. Zhang, L. et al. Insulin-like growth factor-binding protein-7 (IGFBP7) links senescence to heart failure. Nat. Cardiovasc. Res. 1, 1195–1214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Artico, L. L. et al. Physiologic IGFBP7 levels prolong IGF1R activation in acute lymphoblastic leukemia. Blood Adv. 5, 3633–3646 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Davies, B. S., Fong, L. G., Yang, S. H., Coffinier, C. & Young, S. G. The posttranslational processing of prelamin A and disease. Annu. Rev. Genomics Hum. Genet. 10, 153–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Jiang, B. et al. Progerin modulates the IGF-1R/Akt signaling involved in aging. Sci. Adv. 8, eabo0322 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Liu, S. Y. & Ikegami, K. Nuclear lamin phosphorylation: an emerging role in gene regulation and pathogenesis of laminopathies. Nucleus 11, 299–314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Worman, H. J., Fong, L. G., Muchir, A. & Young, S. G. Laminopathies and the long strange trip from basic cell biology to therapy. J. Clin. Invest. 119, 1825–1836 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Safavi-Hemami, H. et al. Specialized insulin is used for chemical warfare by fish-hunting cone snails. Proc. Natl Acad. Sci. USA 112, 1743–1748 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ahorukomeye, P. et al. Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor. eLife 8, e41574 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Menting, J. G. et al. A minimized human insulin-receptor-binding motif revealed in a Conus geographus venom insulin. Nat. Struct. Mol. Biol. 23, 916–920 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Bao, S. J., Xie, D. L., Zhang, J. P., Chang, W. R. & Liang, D. C. Crystal structure of desheptapeptide(B24-B30)insulin at 1.6 Å resolution: implications for receptor binding. Proc. Natl Acad. Sci. USA 94, 2975–2980 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Xiong, X. et al. A structurally minimized yet fully active insulin based on cone-snail venom insulin principles. Nat. Struct. Mol. Biol. 27, 615–624 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Chrudinova, M. et al. Characterization of viral insulins reveals white adipose tissue-specific effects in mice. Mol. Metab. 44, 101121 (2021).

    Article  CAS  PubMed  Google Scholar 

  214. Zhang, F., Altindis, E., Kahn, C. R., DiMarchi, R. D. & Gelfanov, V. A viral insulin-like peptide is a natural competitive antagonist of the human IGF-1 receptor. Mol. Metab. 53, 101316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Moreau, F. et al. Interaction of a viral insulin-like peptide with the IGF-1 receptor produces a natural antagonist. Nat. Commun. 13, 6700 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Belavgeni, A. et al. vPIF-1 is an insulin-like antiferroptotic viral peptide. Proc. Natl Acad. Sci. USA 120, e2300320120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wu, M. et al. Author correction: Functionally selective signaling and broad metabolic benefits by novel insulin receptor partial agonists. Nat. Commun. 15, 688 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Chen, Y. S. et al. Insertion of a synthetic switch into insulin provides metabolite-dependent regulation of hormone-receptor activation. Proc. Natl Acad. Sci. USA 118, e2103518118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Liu, Y. et al. Recent progress in glucose-responsive insulin. Diabetes 73, 1377–1388 (2024).

    Article  CAS  PubMed  Google Scholar 

  220. Hoeg-Jensen, T. Review: glucose-sensitive insulin. Mol. Metab. 46, 101107 (2021).

    Article  CAS  PubMed  Google Scholar 

  221. Hoeg-Jensen, T. et al. Glucose-sensitive insulin with attenuation of hypoglycaemia. Nature 634, 944–951 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Brange, J., Andersen, L., Laursen, E. D., Meyn, G. & Rasmussen, E. Toward understanding insulin fibrillation. J. Pharm. Sci. 86, 517–525 (1997).

    Article  CAS  PubMed  Google Scholar 

  223. Hua, Q. X. & Weiss, M. A. Mechanism of insulin fibrillation: the structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate. J. Biol. Chem. 279, 21449–21460 (2004).

    Article  CAS  PubMed  Google Scholar 

  224. Wang, L. et al. Structural basis of insulin fibrillation. Sci. Adv. 9, eadi1057 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Pillutla, R. C. et al. Peptides identify the critical hotspots involved in the biological activation of the insulin receptor. J. Biol. Chem. 277, 22590–22594 (2002).

    Article  CAS  PubMed  Google Scholar 

  226. Schaffer, L. et al. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks. Proc. Natl Acad. Sci. USA 100, 4435–4439 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Jensen, M., Hansen, B., De Meyts, P., Schaffer, L. & Urso, B. Activation of the insulin receptor by insulin and a synthetic peptide leads to divergent metabolic and mitogenic signaling and responses. J. Biol. Chem. 282, 35179–35186 (2007).

    Article  CAS  PubMed  Google Scholar 

  228. Park, J. et al. Activation of the insulin receptor by an insulin mimetic peptide. Nat. Commun. 13, 5594 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kirk, N. S. et al. Activation of the human insulin receptor by non-insulin-related peptides. Nat. Commun. 13, 5695 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lawrence, C. F. et al. Insulin mimetic peptide disrupts the primary binding site of the insulin receptor. J. Biol. Chem. 291, 15473–15481 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Keefe, A. D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Yunn, N. O. et al. An aptamer agonist of the insulin receptor acts as a positive or negative allosteric modulator, depending on its concentration. Exp. Mol. Med. 54, 531–541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Yunn, N. O. et al. A hotspot for enhancing insulin receptor activation revealed by a conformation-specific allosteric aptamer. Nucleic Acids Res. 49, 700–712 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Kim, J. et al. Functional selectivity of insulin receptor revealed by aptamer-trapped receptor structures. Nat. Commun. 13, 6500 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Lee, J., Miyazaki, M., Romeo, G. R. & Shoelson, S. E. Insulin receptor activation with transmembrane domain ligands. J. Biol. Chem. 289, 19769–19777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Bhaskar, V. et al. A fully human, allosteric monoclonal antibody that activates the insulin receptor and improves glycemic control. Diabetes 61, 1263–1271 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Spratt, J. et al. Multivalent insulin receptor activation using insulin-DNA origami nanostructures. Nat. Nanotechnol. 19, 237–245 (2024).

    Article  CAS  PubMed  Google Scholar 

  238. LeRoith, D., Holly, J. M. P. & Forbes, B. E. Insulin-like growth factors: ligands, binding proteins, and receptors. Mol. Metab. 52, 101245 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Stenvers, D. J., Scheer, F., Schrauwen, P., la Fleur, S. E. & Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 15, 75–89 (2019).

    Article  PubMed  Google Scholar 

  241. Crosby, P. et al. Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell 177, 896–909 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. González-Vila, A. et al. Astrocytic insulin receptor controls circadian behavior via dopamine signaling in a sexually dimorphic manner. Nat. Commun. 14, 8175 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Fougeray, T. et al. The hepatocyte insulin receptor is required to program the liver clock and rhythmic gene expression. Cell Rep. 39, 110674 (2022).

    Article  CAS  PubMed  Google Scholar 

  244. Ziegler, A. N. et al. Insulin-like growth factor II: an essential adult stem cell niche constituent in brain and intestine. Stem Cell Rep. 12, 816–830 (2019).

    Article  CAS  Google Scholar 

  245. Becker, C., Lust, K. & Wittbrodt, J. Igf signaling couples retina growth with body growth by modulating progenitor cell division. Development 148, dev199133 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kamei, H. & Duan, C. Alteration of organ size and allometric scaling by organ-specific targeting of IGF signaling. Gen. Comp. Endocrinol. 314, 113922 (2021).

    Article  CAS  PubMed  Google Scholar 

  247. Tu, X. et al. Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors. Sci. Adv. 9, eadg0666 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Pandey, K. et al. Neuronal activity drives IGF2 expression from pericytes to form long-term memory. Neuron 111, 3819–3836 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Salazar-Petres, E. R. & Sferruzzi-Perri, A. N. Pregnancy-induced changes in β-cell function: what are the key players? J. Physiol. 600, 1089–1117 (2022).

    Article  CAS  PubMed  Google Scholar 

  250. Lopez-Tello, J. et al. Fetal manipulation of maternal metabolism is a critical function of the imprinted Igf2 gene. Cell Metab. 35, 1195–1208 (2023).

    Article  CAS  PubMed  Google Scholar 

  251. Sandovici, I. et al. The imprinted Igf2Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Dev. Cell 57, 63–79 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Yang, Y. et al. Endogenous IGF signaling directs heterogeneous mesoderm differentiation in human embryonic stem cells. Cell Rep. 29, 3374–3384 (2019).

    Article  CAS  PubMed  Google Scholar 

  253. Wamaitha, S. E. et al. IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nat. Commun. 11, 764 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Okawa, E. R. et al. Essential roles of insulin and IGF-1 receptors during embryonic lineage development. Mol. Metab. 47, 101164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Chell, J. M. & Brand, A. H. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143, 1161–1173 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Sousa-Nunes, R., Yee, L. L. & Gould, A. P. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471, 508–512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Lozano-Ureña, A. et al. IGF2 interacts with the imprinted gene Cdkn1c to promote terminal differentiation of neural stem cells. Development 150, dev200563 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Venkatraman, A. et al. Maternal imprinting at the H19Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500, 345–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Lu, J. et al. IGFBP1 increases β-cell regeneration by promoting α- to β-cell transdifferentiation. EMBO J. 35, 2026–2044 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Liu, C. et al. Ca2+ concentration-dependent premature death of igfbp5a−/− fish reveals a critical role of IGF signaling in adaptive epithelial growth. Sci. Signal. 11, eaat2231 (2018).

    Article  PubMed  Google Scholar 

  261. Li, Y. et al. ROS signaling-induced mitochondrial Sgk1 expression regulates epithelial cell renewal. Proc. Natl Acad. Sci. USA 120, e2216310120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Wang, J. et al. Bone marrow-derived IGF-1 orchestrates maintenance and regeneration of the adult skeleton. Proc. Natl Acad. Sci. USA 120, e2203779120 (2023).

    Article  CAS  PubMed  Google Scholar 

  263. Xin, M. et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci. Signal. 4, ra70 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Holly, J. M. P., Biernacka, K. & Perks, C. M. The neglected insulin: IGF-II, a metabolic regulator with implications for diabetes, obesity, and cancer. Cells 8, 1207 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Garla, V. et al. Non-islet cell hypoglycemia: case series and review of the literature. Front. Endocrinol. 10, 316 (2019).

    Article  Google Scholar 

  266. Fang, F., Goldstein, J. L., Shi, X., Liang, G. & Brown, M. S. Unexpected role for IGF-1 in starvation: maintenance of blood glucose. Proc. Natl Acad. Sci. USA 119, e2208855119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Douglas, R. S. et al. Teprotumumab for the treatment of active thyroid eye disease. N. Engl. J. Med. 382, 341–352 (2020).

    Article  CAS  PubMed  Google Scholar 

  268. Freychet, P., Roth, J. & Neville, D. M. Jr. Insulin receptors in the liver: specific binding of [125 I]insulin to the plasma membrane and its relation to insulin bioactivity. Proc. Natl Acad. Sci. USA 68, 1833–1837 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. White, M. F., Shoelson, S. E., Keutmann, H. & Kahn, C. R. A cascade of tyrosine autophosphorylation in the β-subunit activates the phosphotransferase of the insulin receptor. J. Biol. Chem. 263, 2969–2980 (1988).

    Article  CAS  PubMed  Google Scholar 

  270. Rajagopalan, M., Neidigh, J. L. & McClain, D. A. Amino acid sequences Gly-Pro-Leu-Tyr and Asn-Pro-Glu-Tyr in the submembranous domain of the insulin receptor are required for normal endocytosis. J. Biol. Chem. 266, 23068–23073 (1991).

    Article  CAS  PubMed  Google Scholar 

  271. Backer, J. M. et al. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 11, 3469–3479 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  PubMed  Google Scholar 

  273. Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  275. Matsumoto, M., Pocai, A., Rossetti, L., Depinho, R. A. & Accili, D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 6, 208–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  276. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  278. Leto, D. & Saltiel, A. R. Regulation of glucose transport by insulin: traffic control of GLUT4. Nat. Rev. Mol. Cell Biol. 13, 383–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  279. Gehart, H., Kumpf, S., Ittner, A. & Ricci, R. MAPK signalling in cellular metabolism: stress or wellness. EMBO Rep. 11, 834–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Cobb, M. H. MAP kinase pathways. Prog. Biophys. Mol. Biol. 71, 479–500 (1999).

    Article  CAS  PubMed  Google Scholar 

  281. Pronk, G. J., McGlade, J., Pelicci, G., Pawson, T. & Bos, J. L. Insulin-induced phosphorylation of the 46- and 52-kDa Shc proteins. J. Biol. Chem. 268, 5748–5753 (1993).

    Article  CAS  PubMed  Google Scholar 

  282. Nichols, R. J. et al. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat. Cell Biol. 20, 1064–1073 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Ozaki, K. et al. Localization of insulin receptor-related receptor in the rat kidney. Kidney Int. 52, 694–698 (1997).

    Article  CAS  PubMed  Google Scholar 

  284. Vitzthum, H. et al. The AE4 transporter mediates kidney acid-base sensing. Nat. Commun. 14, 3051 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  286. Salmeen, A., Andersen, J. N., Myers, M. P., Tonks, N. K. & Barford, D. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol. Cell 6, 1401–1412 (2000).

    Article  CAS  PubMed  Google Scholar 

  287. Sevillano, J., Sanchez-Alonso, M. G., Pizarro-Delgado, J. & Ramos-Alvarez, M. D. P. Role of receptor protein tyrosine phosphatases (RPTPs) in insulin signaling and secretion. Int. J. Mol. Sci. 22, 5812 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Powers, A. C. Type 1 diabetes mellitus: much progress, many opportunities. J. Clin. Invest. 131, e142242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Taylor, S. I., Yazdi, Z. S. & Beitelshees, A. L. Pharmacological treatment of hyperglycemia in type 2 diabetes. J. Clin. Invest. 131, e142243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. McIntyre, H. D. et al. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 5, 47 (2019).

    Article  PubMed  Google Scholar 

  291. Semple, R. K., Savage, D. B., Cochran, E. K., Gorden, P. & O’Rahilly, S. Genetic syndromes of severe insulin resistance. Endocr. Rev. 32, 498–514 (2011).

    Article  CAS  PubMed  Google Scholar 

  292. Angelidi, A. M., Filippaios, A. & Mantzoros, C. S. Severe insulin resistance syndromes. J. Clin. Invest. 131, e142245 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Milman, S., Huffman, D. M. & Barzilai, N. The somatotropic axis in human aging: framework for the current state of knowledge and future research. Cell Metab. 23, 980–989 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Sélénou, C., Brioude, F., Giabicani, E., Sobrier, M. L. & Netchine, I. IGF2: development, genetic and epigenetic abnormalities. Cells 11, 1886 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Gallagher, E. J. & LeRoith, D. Minireview: IGF, insulin, and cancer. Endocrinology 152, 2546–2551 (2011).

    Article  CAS  PubMed  Google Scholar 

  296. Denduluri, S. K. et al. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis. 2, 13–25 (2015).

    Article  PubMed  Google Scholar 

  297. Gallagher, E. J. & LeRoith, D. Hyperinsulinaemia in cancer. Nat. Rev. Cancer 20, 629–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  298. de la Monte, S. M. & Wands, J. R. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J. Alzheimers Dis. 7, 45–61 (2005).

    Article  PubMed  Google Scholar 

  299. Arnold, S. E. et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol. 14, 168–181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Alberini, C. M. IGF2 in memory, neurodevelopmental disorders, and neurodegenerative diseases. Trends Neurosci. 46, 488–502 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Guarente, L., Sinclair, D. A. & Kroemer, G. Human trials exploring anti-aging medicines. Cell Metab. 36, 354–376 (2024).

    Article  CAS  PubMed  Google Scholar 

  302. Bornfeldt, K. E. & Tabas, I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 14, 575–585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. von der Thüsen, J. H. et al. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype. Am. J. Pathol. 178, 924–934 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Laron, Z. & Werner, H. Administration of insulin like growth factor I (IGF-I) lowers serum lipoprotein(a)-impact on atherosclerotic cardiovascular disease. Growth Hormone IGF Res. 71, 101548 (2023).

    Article  CAS  Google Scholar 

  305. Little, K. et al. Common pathways in dementia and diabetic retinopathy: understanding the mechanisms of diabetes-related cognitive decline. Trends Endocrinol. Metab. 33, 50–71 (2022).

    Article  CAS  PubMed  Google Scholar 

  306. Tsui, S. et al. Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in Graves’ disease. J. Immunol. 181, 4397–4405 (2008).

    Article  CAS  PubMed  Google Scholar 

  307. Smith, T. J. & Janssen, J. Insulin-like growth factor-I receptor and thyroid-associated ophthalmopathy. Endocr. Rev. 40, 236–267 (2019).

    Article  PubMed  Google Scholar 

  308. Hales, C. N. & Ozanne, S. E. For debate: fetal and early postnatal growth restriction lead to diabetes, the metabolic syndrome and renal failure. Diabetologia 46, 1013–1019 (2003).

    Article  CAS  PubMed  Google Scholar 

  309. Saenger, P., Czernichow, P., Hughes, I. & Reiter, E. O. Small for gestational age: short stature and beyond. Endocr. Rev. 28, 219–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  310. Veenendaal, M. V. et al. Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG 120, 548–553 (2013).

    Article  CAS  PubMed  Google Scholar 

  311. Painter, R. C. et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115, 1243–1249 (2008).

    Article  CAS  PubMed  Google Scholar 

  312. Vogt, M. C. & Hobert, O. Starvation-induced changes in somatic insulin/IGF-1R signaling drive metabolic programming across generations. Sci. Adv. 9, eade1817 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Voo, K. et al. Maternal starvation primes progeny response to nutritional stress. PLoS Genet. 17, e1009932 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Zhu, Z. et al. Global histone H2B degradation regulates insulin/IGF signaling-mediated nutrient stress. EMBO J. 42, e113328 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Burton, N. O. et al. Insulin-like signalling to the maternal germline controls progeny response to osmotic stress. Nat. Cell Biol. 19, 252–257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Kajimura, S., Aida, K. & Duan, C. Insulin-like growth factor-binding protein-1 (IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proc. Natl Acad. Sci. USA 102, 1240–1245 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Gupta, M. B., Biggar, K. K., Li, C., Nathanielsz, P. W. & Jansson, T. Increased colocalization and interaction between decidual protein kinase A and insulin-like growth factor-binding protein-1 in intrauterine growth restriction. J. Histochem. Cytochem. 70, 515–530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants (R35GM142937 to E.C.; R01GM136976 to X.-C.B.); National Science Foundation grant (IOS-2402404 to CD); the Irma T. Hirschl award (to E.C.); and the Welch foundation (I-1944 to X.-C.B.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Eunhee Choi, Cunming Duan or Xiao-chen Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Andrzej Brzozowski, Jiri Jiracek and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, E., Duan, C. & Bai, Xc. Regulation and function of insulin and insulin-like growth factor receptor signalling. Nat Rev Mol Cell Biol (2025). https://doi.org/10.1038/s41580-025-00826-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-025-00826-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing