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Abstract  Landslides represent a serious worldwide hazard, espe-
cially in Italy, where exposure to hydrogeological risk is very high; 
for this reason, a landslide quantitative risk assessment (QRA) is 
crucial for risk management and for planning mitigation meas-
ures. In this study, we present and describe a novel methodological 
approach of QRA for slow-moving landslides, aiming at national 
replicability. This procedure has been applied at the basin scale in 
the Arno River basin (9100 km2, Central Italy), where most land-
slides are slow-moving. QRA is based on the application of the 
equation risk = hazard (H) × vulnerability (V) × exposure (E) and 
on the use of open data with uniform characteristics at the national 
scale. The study area was divided into a grid with a 1 km2 cell size, 
and for each cell, the parameters necessary for the risk assessment 
were calculated. The obtained results show that the total risk of the 
study area amounts to approximately 7 billion €. The proposed 
methodology presents several novelties in the risk assessment for 
the regional/national scale of the analysis, mainly concerning the 
identification of the datasets and the development of new method-
ologies that could be applicable over such large areas. The present 
work demonstrates the feasibility of the methodology and discusses 
the obtained results.
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Introduction
Italy is a country where the exposure to the risk of hydrogeological 
disasters is very high; landslides and mass movement are very com-
mon in Italy (Catani et al. 2005). They are the natural hazards that 
occur with the highest frequency, and after earthquakes, they cause 
the most casualties and damage to buildings and infrastructure.

Risk analysis is a process of estimating the risk of landslide 
hazards to populations and property. This process can facilitate 
financial and cost–benefit analyses when planning risk reduction 
strategies (Fell et al. 2008). There are three types of risk analysis: 
qualitative, semiquantitative, and quantitative (Chowdhury and 
Flentje 2003).

Quantitative risk assessment (QRA) is distinguished from quali-
tative risk analysis by the input data, the procedures used in the 
analysis and the final risk output. In contrast with qualitative risk 
analysis, which yields results in terms of weighted indices, rela-
tive ranks (e.g. low, moderate, and high) or numerical classifica-
tion, QRA quantifies the probability of a given level of loss and the 
associated uncertainties (Corominas et al. 2013). QRA is important 
for scientists and engineers because it allows risk to be quantified 
in an objective and reproducible manner, and the results can be 

compared from one location (site, region, etc.) to another. For land-
slide risk managers, it is also useful because it allows a cost–benefit 
analysis to be performed, and it provides a basis for the prioritiza-
tion of management and mitigation actions and the associated allo-
cation of resources. For society in general, QRA helps to increase 
the awareness of existing risk levels and the appreciation of the 
efficacy of the actions undertaken. QRA uses numerical values 
and mathematical methods to estimate objective probabilities. A 
quantitative risk map is produced on a continuous scale in which 
numerical values indicate the distribution of the risk expressed by 
the probability of the expected losses for the elements at risk. QRA 
is performed separately for each type of element (specific risk), 
and the results are then integrated into a map of the total risk by 
combining all maps of the specific risk (total risk).

According to the Varnes and IAEG Commission on Landslides 
(1984), risk is defined as R (I) = H × V (I) × E, where R is the land-
slide risk, H is the landslide hazard, V is the vulnerability of vul-
nerable elements, I is the intensity of landslides and E is the value 
of the element at risk (e.g. the number of people or the monetary 
value of the buildings).

Landslide hazard assessment means the estimation of the zones 
where landslides of a particular type, volume, runout and intensity 
may occur within a given period of time (Corominas et al. 2013). 
The evaluation of hazards can be based on the definition of the 
following probabilities: (i) spatial probability: the probability that 
a given area will be hit by a landslide, (ii) temporal probability: the 
probability that a given triggering event will cause landslides, (iii) 
size/volume probability: the probability that the slide has a given 
size/volume, (iv) reach probability: the probability that the slide 
will travel a certain distance downslope (Corominas et al. 2013). 
In particular, the spatial probability is also defined as landslide 
susceptibility.

Landslide susceptibility assessment can be considered the initial 
step towards landslide hazard and risk assessment, but it can also 
be a final product in itself that can be used in land-use planning 
and environmental impact assessment (Corominas et al. 2013). In 
landslide susceptibility maps (LSMs), each terrain unit is associated 
with a numerical index that represents the spatial probability of a 
landslide occurrence, but LSMs do not explicitly convey informa-
tion about landslide return periods (Brabb 1984).

Intensity is used as a general term, which can include different 
concepts and parameters (Lari et al. 2014). Different research-
ers have tried to define the damaging capability of landslides in 
different ways and by using a variety of parameters. Intensity is 
essentially considered to depend upon kinetic energy (mass and 
velocity) (Hungr 1995) and geometric characteristics (Einstein 
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1988). Hungr (1997) argued that the maximum movement velocity 
is the most important intensity parameter and defined a scale of 
destructiveness based on the velocity and also provided specific 
velocity thresholds associated with the different intensity classes. 
Evans (2003) used the landslide area to set curves of the destruc-
tiveness of the landslide. Landslide volume has also been used 
by several researchers (Cardinali et al. 2002) as a proxy for land-
slide magnitude. In addition to velocity, extent and volume, other 
proposed parameters are represented by the recharge rate (Jakob 
et al. 2005), the depth of the deposit (Revellino et al. 2008) and the 
impact velocity (Luo et al. 2019) for debris flows and avalanches 
or trajectories and kinetic energy (Copons et al. 2005; Corominas 
et al. 2005; Jaboyedoff et al. 2005) for rock falls.

Despite the many suggested methods, the practical assess-
ment of intensity is still a quite difficult task, since it is highly site-
dependent (Corominas et al. 2014), and many parameters, both 
geometric and kinematic, should be accounted for, depending on 
the landslide type and propagation mechanism. A definition of the 
landslide intensity at the basin scale is even more challenging given 
the lack of information on the expected velocity for a large number 
of landslides and the assumptions necessary to estimate the volume 
for a large dataset of landslides (Catani et al. 2005; Lu et al. 2014).

Vulnerability is defined as the degree of loss of a given element 
or set of elements exposed to the occurrence of a landslide of a 
given magnitude/intensity. It is expressed on a scale of 0 (no loss) 
to 1 (total loss) (Varnes and IAEG Commission on Landslides 1984; 
Fell 1994; Corominas et al. 2014). The assessment of vulnerability 
involves in many cases the evaluation of several different param-
eters and factors, such as building materials and techniques, the 
state of conservation, the presence of protection structures and 
the presence of warning systems (Fell 1994; Fell and Hartford 1997). 
Vulnerability can be split into physical vulnerability and vulner-
ability of people. Physical vulnerability refers to the direct damage 
to buildings, utilities and infrastructure, while the vulnerability of 
people (fatalities, injuries) relates to whether a landslide event will 
result in injuries or fatalities.

The vulnerability of people depends on many factors, such as the 
landslide type, size and intensity; the resistance and mobility of the 
individuals affected by the landslide hazard; and their relative posi-
tions in the exposed area. The resistance of a person to landslides is 
believed to also be a function of the person’s intellectual maturity 
(e.g. perception of the risk) and physical ability (e.g. age) (Uzielli 
et al. 2008). Considering the large uncertainties and complexities 
associated with the vulnerability of people to landslides, all existing 
methodologies are based on expert judgement and empirical data.

Conversely, many studies have been proposed for the assess-
ment of physical vulnerability in recent years (Crozier and Glade 
2005; Peng et al. 2014, 2015; Uzielli et al. 2015; Ferlisi et al. 2021). 
The methodologies used for the quantification of vulnerability 
can be classified according to the type of input data and the eval-
uation of the response parameters into judgemental/heuristic, 
data-driven (using data from past events) or analytical (using 
physical models) (Corominas et al. 2014). However, the major-
ity of the proposed approaches are related to site-specific and 
local scale analyses given the difficulties in evaluating sound and 
reproducible maps of vulnerability at the regional scale. Expo-
sure, defined as the number of lives or the value of the exposed 
properties at risk, is often strictly connected to vulnerability in 

its practical assessment (Schuster and Fleming 1986; Schuster 
and Turner 1996).

Despite the impressive amount of work dealing with QRA and the 
latest advances in the field, it should be stressed that, to date, land-
slide QRA analyses are mainly limited to test sites with small area 
extensions. When working in very broad areas (e.g. entire nations or 
regions), QRA is hampered by the difficulty of gathering complete 
and homogeneous datasets and the impossibility of applying refined 
methodologies. In such cases, landslide risk studies usually rely on 
the definition of simplified indicators (Guillard-Gonçalves et al. 2015; 
de Almeida et al. 2016; Pereira et al. 2020; Iadanza et al. 2021; Segoni 
and Caleca 2021), which have the advantage of being very easy to 
apply, update and disseminate, but from a scientific point of view, 
they represent an oversimplification of a full QRA procedure.

The objective of this paper was to conceive, define and test 
a methodological approach for landslide QRA in terms of the 
expected damage to buildings and the land use applicable at the 
national scale for slow-moving landslides. The methodology has 
been applied and tested in the Arno River basin. The final purpose 
is to have a tool for land planning and prioritization of the eco-
nomic resources for landslide disaster risk reduction.

Materials and methods

Methodological approach and input data
In this work, the risk for slow-moving landslides is defined as R 
(I) = H × V (I) × E, where R is the landslide risk, H is the landslide 
hazard, V is the vulnerability of vulnerable elements, I is the inten-
sity of landslides and E is the value of the element at risk (e.g. the 
number of people or the monetary value of the buildings).

In particular, due to the difficulty of retrieving suitable infor-
mation at the national scale for the evaluation of the temporal 
probability occurrence of landslides, which is usually expressed 
as frequency, return period, or exceedance probability, we decided 
to use the susceptibility (spatial probability of occurrence) instead 
of the hazard (spatial and temporal probability of occurrence). 
We are aware that this decision represents a simplification of the 
problem. However, as stated by Corominas et al. (2014) landslide 
susceptibility assessment can be considered an end product in itself 
that can be used in land-use planning and environmental impact 
assessment. This stands especially in small-scale analyses or in situ-
ations where sufficient information on past landslide occurrence 
is lacking, hampering the assessment of the spatial and temporal 
probabilities of events. In this work, we focused on the evaluation 
of the specific risk of the buildings and the land use classes. Since 
our objective was to create a procedure to be applied at the national 
scale, all of the input data used are open access, and they have uni-
form characteristics at the national scale (Table 1). The detailed 
procedure for the evaluation of QRA and of the single component 
of risk is described in Fig. 1. The resolution of the QRA map is 
1 km2, and floodplains have been excluded from the analysis to 
simplify the calculation.

The proposed methodology is presented and discussed through 
a case study of the Arno River basin (Central Italy), where every sin-
gle step of the methodological approach was tested and calibrated.
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Study area

The Arno River basin (Central Italy) extends for approximately 
9100 km2 and is primarily located in the Tuscany region (98.4%) 

and for a small part in the Umbria region (1.6%) (Fig. 2). The 
Arno River basin is located on the inner side of the Northern 
Apennine chain, which is a complex thrust-belt system made 
up of the juxtaposition of several tectonic units built up during 

Table 1   The input data with their features and role in the QRA. The 
translation of the Italian acronyms is provided hereafter: IFFI (Inven-
tario Fenomeni Franosi in Italia) stands for “inventory of Italian land-
slides”; ISTAT​ (Istituto nazionale di STATistica) stands for “National 

Institute of Statistics”; OMI (Osservatorio Mercato Immobiliare) stands 
for “real estate market observatory”; VAM (Valori Agricoli Medi) stands 
for “mean agricultural values”

Input data Description Risk parameter Scale/resolution Website/reference

DTM Digital Terrain Model Risk analysis mask 10 m http://​tinit​aly.​pi.​ingv.​it/

IFFI database Database of Italian land-
slides

Hazard — intensity 1:10.000/1: 25.000 https://​www.​ispra​mbien​te.​
gov.​it/​it

Susceptibility map Spatial probability of 
landslides occurrence

Hazard 50 m Trigila et al. (2013)

PS database Distribution of ground 
deformation and move-
ment rate

Intensity National Raspini et al. (2018)

ISTAT census sections Spatial distribution of 
buildings character-
istics

Vulnerability From 1:5.000 to 
1:25.000

https://​www.​istat.​it/

OMI database Market value of buildings Exposure Sub-municipal scale https://​www.​agenz​iaent​rate.​
gov.​it/

Open Street Map (OSM) 
database

Spatial distribution of 
buildings

Exposure 1:5.000 https://​www.​opens​treet​map.​
org/

Corine Land Cover (CLC) 
database

Spatial distribution of 
land use

Vulnerability — 
exposure

European scale — 
minimum mapping 
unit (MMU) of 25 ha

https://​www.​ispra​mbien​te.​
gov.​it/​it

VAM database Market value of land use Exposure Municipal scale https://​www.​agenz​iaent​rate.​
gov.​it

Fig. 1   Flowchart of the proposed methodology for QRA

http://tinitaly.pi.ingv.it/
https://www.isprambiente.gov.it/it
https://www.isprambiente.gov.it/it
https://www.istat.it/
https://www.agenziaentrate.gov.it/
https://www.agenziaentrate.gov.it/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.isprambiente.gov.it/it
https://www.isprambiente.gov.it/it
https://www.agenziaentrate.gov.it
https://www.agenziaentrate.gov.it
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the Tertiary under a compressive regime that was followed by 
extensional tectonics from the Upper Tortonian. The extensional 
phase produced a sequence of horst-graben structures with an 
alignment NW–SE that have since been filled with marine (to the 
west) and fluvio-lacustrine (to the east) sediments (Vai and Mar-
tini 2001) set down from the Upper Tortonian to the Quaternary.

From a geomorphological point of view, the Arno River basin 
is mainly hilly, with four chains: Monti Pisani-Montagnola Sen-
ese, Monte Albano-Chianti, Calvana-Monte Morello and Prato-
magno, Monte Falterona-Mandrioli-Alpe di Catenaia, mainly 
made up of flysch rocks. In the plains, cohesive and granular 
fluvio-lacustrine sediments crop out.

The area is characterized by a temperate climate with a dry 
summer. The general annual rainfall pattern is typified by a 
summer minimum in July and two maxima, one in November 
and the other at the end of the winter. Mean values of yearly 
rainfall vary in relation to relief and location, ranging from 
800 mm on the Chiana valley to approximately 1800 mm on the 
Apennine ridges.

It is widely known and agreed that slides affecting the Arno 
River basin and generally the Northern Apennines mainly move by 
reactivation of dormant slides probably initiated during the early 
phases of the Holocene as a consequence of the sharp climate varia-
tion that began at the end of the last cold oscillation (Bertolini et al. 
2004). The study area is strongly subjected to mass movements that 

have accumulated a large number of recorded cases and substantial 
total damage, both in properties and life losses. Landslides are very 
common in the study area. The geological settings and lithological 
characteristics of the area affect the typology and occurrence of 
landslides, which are mainly constituted by slow-moving rotational 
slides (IAEG Commission on Landslides 1990; Bertolini et al. 2004; 
Catani et al. 2005, 2013, 2016; Bicocchi et al. 2019).

According to the IFFI database, the Italian national inventory of 
landslides at a 1:10,000 scale (Trigila et al. 2010), 18,134 landslides 
were mapped in the Arno River basin. The majority are slides 
(87.4%), rotational and translational, followed by flows (6.3%), com-
plex movements (2.1%) and rock falls/topples (1.7%). Rapid flows 
make up less than 1%, while more than 2% of the movement’s typol-
ogy has not been defined. The areas of the phenomena range from 
100 m2 to 5 × 106 m2, and the average area is 3 × 104 m2. In the Arno 
River basin, the majority of landslides are slow-moving (rotational 
and translational slides and complex movements) (Catani et al. 2005). 
According to Catani et al. (2005) rotational and translational slides 
affecting the Arno River basin and generally the Northern Apen-
nines, mainly move by reactivation of dormant slides probably initi-
ated during the early phases of the Holocene as a consequence of ice 
retreat which occurred at the end of the last glaciation (Bertolini et al. 
2004). Consequently, most landslides reactivate at slow velocity while 
the frequency of first-time landslides is very low.

Fig. 2   Location, main drainage, slow-moving landslides and major mountain ridges of the Arno River basin. (1) Mt-Pisano-Montagnola Sen-
ese; (2) Mt. Albano-Chianti; (3) Calvana-Mt. Morello-Pratomagno; (4) Falterona-Mandrioli-Alpe di Catenaia



Landslides 

Hazard assessment

In this work, the “hazard” component of risk is considered the spa-
tial probability of a landslide occurrence and is thus approximated 
with an index derived from previous landslide susceptibility stud-
ies. Since landslide susceptibility mapping is a complex task and the 
focus of the work is the establishment of a more general procedure to 
quantitatively assess the risk at the national scale, the present study 
relies on an already published slow-moving landslide susceptibility 
map of Italy (Trigila et al. 2013). The map was obtained by applying 
the random forest treebagger (Breiman 2001; Brenning 2005; Catani 
et al. 2013), a machine learning algorithm widely consolidated in LSM 
studies (Catani et al. 2013; Kavzoglu et al. 2019; Xiao et al. 2020), to 
a series of environmental parameters (lithology, land cover, eleva-
tion, slope gradient, curvature, profile curvature, planar curvature, 
aspect, flow accumulation, topographic wetness index and stream 
power index). The algorithm was trained with the official national 
landslide inventory of Italy (IFFI), which is recognized as one of the 
most complete and homogeneous existing national databases (Trigila 
et al. 2010; Herrera et al. 2018). The peculiarity of the map is that 
the algorithm was not applied with a classical classification mode 
based on two classes (namely presence/absence of landslides), which 
is the most recurrent approach in the international literature. The 
approach of Trigila et al. (2013) was based on a regression model, 
trying to predict continuous values from 0 to 1, expressing the per-
centage of area interested by landslides. Its accuracy was evaluated 
by means of the AUC (area under the receiver operator characteristic 
curve), which was equal to 0.76, showing a relatively good result for 
susceptibility maps based on regression models.

The original susceptibility map, based on 50 × 50 m pixels, was 
imported in a GIS system, clipped to the test site, and overlaid on 
an updated version of the IFFI inventory. The hazard index was 
defined as equal to one in the pixels occupied by slow-moving 
landslides contained in the inventory and equal to the original 
susceptibility value elsewhere. Finally, an upscaling at the resolu-
tion selected for the present work was necessary: the values of the 
hazard index raster (with 50 m cell size) were averaged over each 1 
km2 cell of the reference grid used for risk analysis, resulting in a 
spatial hazard index theoretically ranging from 0 to 1.

Landslide intensity

The selection of proper intensity parameters is an important issue. 
Intensity is not meant to express the magnitude (in terms of volume 
or area) of a landslide but its destructive capability, leading to a 
certain degree of damage. For slow-moving landslides (large slides, 
rockslides and earthflows), intensity is generally expressed in terms 
of total displacement (Saygili and Rathje 2009), differential ground 
deformation (Negulescu and Foerster 2010) and the displacement 
rate (Mansour et al. 2011; Frattini et al. 2013), closely related to the 
expected degree of damage to urban settlements and infrastruc-
tures in general. In areas affected by slow-moving landslides, the 
landslide extent can be considered a reasonable proxy for landslide 
intensity (Guzzetti et al. 2005). Consequently, in the present study, 
the landslide intensity (I) in the Arno River basin was estimated as 
a function of the landslide velocity scale (v) and the landslide area 
classes (a), which represent the most suitable parameters.

The IFFI catalogue has been used to obtain information on the 
landslide distribution and extension within the Arno River basin, 
while information on landslide velocity has been retrieved thanks 
to Sentinel-1 SAR (synthetic aperture radar) data, which enable 
the detection of slow movements on the order of centimetres per 
year. MT-InSAR (multitemporal-interferometric SAR) products 
have already been exploited by many authors to define the veloc-
ity of potential slow-moving landslides (e.g. Raspini et al. 2018). 
Cigna et al. (2013) employed an MT-InSAR-based matrix approach 
to evaluate the state of activity and the intensity of extremely to 
very slow landslides. Bianchini et al. (2017) presented a GIS-based 
procedure aimed at evaluating specific risk at the municipality level 
using satellite interferometry as a landslide intensity zonation tool. 
Lu et al. (2014), leveraging geostatistical tools, used the maximum 
velocity retrieved by the MT-InSAR dataset as an indicator to derive 
a landslide intensity map. Tofani et al. (2014) leveraged both satel-
lite and ground-based radar interferometry for the zonation of the 
intensity of a large complex landslide in the Northern Apennine 
(Italy). Solari et al. (2020) proposed using satellite interferometric 
data as a direct estimation of landslide intensity and as a proxy 
for the presence of unstable debris covers that could be the source 
areas of future debris flows, whose runout is foreseen by means 
of a basin-scale model. Despite these examples, the direct use of 
MT-InSAR information for landslide intensity estimation is still 
scarce, constrained for technical reasons to slow-moving landslides 
and limited, with few exceptions, to single slopes or small basins.

The spatial distribution of landslides within the Arno River 
basin has been investigated by calculating, for each cell of the 
grid, the landslide index, the most common tool used to assess the 
landslide distribution at a small scale. The index is calculated as 
the ratio between the landslide area within the cell and the exten-
sion of the cell itself (i.e. 1 km2). The values of the landslide index 
were classified into four classes (A0, A1, A2, A3) using the natural 
breaks (Jenks 1967) algorithm, which is a widely used method that 
maximizes variance between classes while reducing variance within 
each class. A0 is defined by a landslide index equal to 0; A1 for 
0 < landslide index ≤ 14.30; A2 14.30 < landslide index ≤ 38.43 and A3 
for landslide index > 38.43.

The spatial distribution of ground deformation induced by 
landslides has been retrieved for the Arno River basin by adopt-
ing a clustering-based method that allows for the extraction of 
moving areas from datasets containing millions of measurement 
points (MP) (Fig. 3c). The method, already followed by other 
authors (e.g. Barra et al. 2017), can be divided into two main 
steps: (i) filtering of the raw deformation map: MP was filtered 
with different velocity threshold values to separate areas with 
different deformation rates. A spatial criterion based on the vari-
ability of a point with respect to its neighbours was adopted to 
discard sparse measurements (isolated points) and points with 
strong discrepancy with respect to its neighbours (outliers); (ii) 
cluster extraction: the resulting filtered maps were further ana-
lysed by creating a buffer zone of 100 m around each MP. Only 
cluster sizes of at least 3 MS were considered representative. The 
buffer and cluster sizes have already been considered reliable by 
other authors (Montalti et al. 2019) on the basis of the extent of 
landslides in the Tuscany region. Each cluster is characterized by 

(1)I = f (v, a)
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Fig. 3   (a) Measurement 
points of ground deforma-
tion acquired in ascending 
geometry. (b) Measurement 
points of ground deforma-
tion acquired in descending 
geometry. (c) Results of the 
clusterization process
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the mean velocity, standard deviation and coherence of the time 
series of the PS/DS points comprising the clusters.

The final output is a geodatabase of polygons containing 
information (rate, extent and TS coherence) on ground motion 
patterns at the basin scale. Two different velocity threshold values 
were set to define three different classes: Vel1 (velocity < 2 mm/
year), Vel2 (2 mm/year < velocity < 16 mm/year) and Vel3 (veloc-
ity > 16 mm/year), with velocity values expressed in absolute 
value. The reason 16 mm/year was selected as the threshold to 
separate Vel3 and Vel2 is that it corresponds to the lower veloc-
ity boundary of an active slow-moving landslide (1.6 m/year), 
according to the classification proposed by Cruden and Varnes 
(1996). Similarly, 2 mm/year was chosen as the boundary between 
Vel2 and Vel1 because it corresponds to the stability interval of 
the interferometric techniques, set on the basis of the statistical 
velocity distribution and the standard deviation of the Sentinel-1 
dataset. A fourth class has been added (Velnd), representing those 
areas lacking measuring points and where information about the 
ground deformation rate is missing and which therefore repre-
sent a separate class. Cluster polygons intersect with the grid to 
associate a velocity value with each 1 km2 cell.

From both the IFFI database and the Sentinel-1 clusters, land-
slide and cluster polygons with an overlap lower than 1 ha with 
the grid cell were discarded and not considered in the analysis. 
The degree of landslide intensity for different combinations of 
landslide velocity and area can be represented in the form of a 
landslide intensity matrix. The landslide intensity matrix with 
different combinations of landslide area and velocity encom-
passes five classes (from I0 to I4, i.e. null, low, moderate, high 
and very high) (Table 2).

Intensity classes were used in the following phases for the 
choice of physical vulnerability values. In slow-moving land-
slides, people are not usually endangered, but damage to build-
ings and infrastructures might be high. Affected buildings may 
have structural or operational failures due to differential settle-
ment or absolute displacement. In some cases, the accumulation 
of slow movement can lead to partial or total disruption (Del 
Soldato et al. 2019).

Vulnerability

Buildings vulnerability

Building vulnerability has been defined as a function of the struc-
tural resistance of buildings and the intensity of landslides. The 

vulnerability definition relies on a modified approach for the defi-
nition of structural resistance proposed by Li et al. (2010) and is 
based on the data of census sections produced by ISTAT in 2011. 
The procedure reported in Fig. 4 is constituted by three phases:

The first phase was the calculation of the structural resistance 
for each census section in the Arno River basin using a modified 
equation from the equation proposed by Li et al. (2010):

where εsty, εsmn and εsht are resistance factors of structure type, 
maintenance state and the number of floors, respectively. These 
parameters are derived from the census section data (Table 1). 
Census sections represent a homogeneous portion of the Italian 
territory, consisting of a single municipality, a portion of it or 
groups of municipalities characterized by similar environmental 
and socioeconomic characteristics. For each census section, use-
ful information is provided, including building characteristics 
(e.g. typology, number, material, etc.) and population distribution 
(e.g. total number, number of families, etc.). For the computation 
of structural resistance, the resistance factors of Eq. 1 have been 
defined according to Li et al. (2010) and Uzielli et al. (2015) (Table 3).

The second phase of the procedure consists of the reaggrega-
tion of the structural resistance values computed for the census 
sections at the resolution of the analysis (cells of 1 km2) through a 
weighted procedure. Then, the cells were classified into six classes 
of structural resistance (Table 4).

The third phase was characterized by the definition of the 
building vulnerability values for each cell; these values were deter-
mined through a contingency matrix that linked the landslide 
intensity classes with the structural resistance classes (Table 4). 
The contingency matrix defines five classes of vulnerability: V0 
(null vulnerability), V1 (low vulnerability), V2 (medium vulner-
ability), V3 (high vulnerability) and V4 (very high vulnerability). 
To obtain quantitative values of vulnerability for the computa-
tion of the quantitative risk, the vulnerability classes were associ-
ated with numerical values ranging from 0 to 1 as follows: V0 = 0, 
V1 = 0.25, V2 = 0.5, V3 = 0.75 and V4 = 1. These values were defined 
with a calibration procedure largely based on empirical evidence 
collected during field surveys and detailed in the section “Calibra-
tion of the risk components”.

Land use vulnerability
Land use vulnerability assessment was based on the informa-
tion given by the CORINE — Land Cover (CLC) database in 2012 
(Table 1). This database gives a land cover map for the entire Italian 
territory and it can be obtained from the ISPRA website (Table 1). 
For this research, the CORINE land cover database was reclassified 
to have five classes of land use. A value of vulnerability, from 0 to 
1, has been defined for each new land use class, according to the 
landslide intensity class of the reference cell. Then, for each cell of 
the grid, the weighted average value was calculated. The vulner-
ability values of land use are based on a previous study on landslide 
risk assessment in the Arno River basin (Catani et al. 2005; Lu et al. 
2014) and by empirical evidence collected during field surveys, as 
explained in the forthcoming section, based on the calibration of 
the procedure.

(2)Rstr =
(

�sty ⋅ �smn ⋅ �sht

)1∕3

Table 2   Contingency matrix of the landslide intensity

Cluster velocity (mm/year)

V1 V2 V3 Vnd

Landslide index A0 I0 I1 I2 I0

A1 I1 I2 I3 I1

A2 I2 I3 I4 I2

A3 I3 I4 I4 I3



Landslides 

Original Paper

Landslides 

Exposure

In the landslide risk assessment studies, exposure (E) is commonly 
defined as the number or the value of the elements at risk (Schuster 
and Fleming 1986). Similar to vulnerability, in this study, vulner-
ability was assessed separately for buildings (Eb) and land use (Elu).

Building exposure
To assess Eb, two national-scale open access datasets were selected: 
(i) OMI (Osservatorio Mercato Immobliare — real estate market 
observatory), managed and updated every 6 months by the National 
Revenue Agency; and (ii) Open Street Map (OSM), a collaborative 
and editable digital map of the world, where the spatial distribu-
tion of the buildings can be easily retrieved (Table 1). OMI data 
include the minimum and maximum trade values (expressed in 
€/m2) for the different typologies of the buildings, aggregated at 
the municipality level and further detailed according to the smaller 

subdivisions (subzones) of each municipality. The test site is com-
prised of 166 municipalities, counting 640 subzones. OMI includes 
observations repeated every semester, and data freely accessible 
online are comprised of 8 observations, spanning from the first 
semester of 2016 to the second of 2019.

The multitemporal data of all of the municipalities included in 
the study area were downloaded, imported into a spreadsheet and 
processed to define, for each subzone, the average market value 
of two distinct building typologies: residential buildings and oth-
ers (including commercial and productive buildings). In the GIS 
system, the two average values were associated with the polygons 
representing the subzones. In the same GIS project, subzones were 
overlaid by the Open Street Map database (Haklay and Weber 2008) 
to associate to each mapped building with the total economic value 
according to its typology and its areal extension. The last step was 
a spatial reaggregation, where Eb was defined over the 1 km2 cells 
representing the basic spatial units of the work.

Land use exposure
To define Elu, two national-scale open access datasets were used: 
(i) VAM (Valori Agricoli Medi — average agrarian values), an open 
access database published online by the National Revenue Agency 
that provides the average estimated price (in €/ha) of different 
typologies of land (particular emphasis is placed on different 
cultures and different forest management), differentiated for 
homogeneous areas called “agrarian regions”; and (ii) CORINE 
Land Cover (CLC), an open access pan-European map of land 
use/land cover, which provides information on the biophysical 
characteristics of the Earth’s surface with high thematic accuracy 
(44 classes).

The classes of the CLC map and the different typologies encom-
passed by the VAM database have been aggregated into the five 
classes already used for the definition of vulnerability (Table 5). 

Table 3   Resistance parameters 
and their values (from Li et al. 
2010) that have been employed 
in the structural resistance 
assessment

Resistance 
parameter

Resistance factor Typology (from ISTAT census sections) Value

εsty Structure type Productive and commercial 0.1

Residential with light structure 0.2

Residential with brick walls 0.8

Residential reinforced concrete 1.5

εsmn Maintenance state Productive and commercial 0.1

Residential in very poor condition 0.1

Residential in a medium condition 0.6

Residential in a good condition 1.2

Residential in a very good condition 1.5

εsht Number of floors Productive and commercial 0.1

Single-storey residential 0.1

Two-storey residential 0.4

Three-storey residential 0.9

Number of floors ≥ 4 1.5

Table 4   Contingency matrix of the building vulnerability

Resistance Intensity

I0 I1 I2 I3 I4

R4: Rstr > 1 0 0 0.25 0.25 0.50

R3: 0.7 < Rstr ≤ 1 0 0.25 0.25 0.50 0.50

R2: 0.5 < Rstr ≤ 0.7 0 0.25 0.50 0.50 0.75

R1: 0.3 < Rstr ≤ 0.5 0 0.25 0.50 0.75 0.75

R0: 0 < Rstr ≤ 0.3 0 0.25 0.75 0.75 1

N.A.: Rstr = 0 or 
Rstr = N.A

N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
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Then, in a GIS system, a unitary price was assigned to each polygon 
representing the agrarian regions on the basis of the extension of 
each CLC class. Finally, calculating the weighted mean, the average 
economic value of Elu was defined for each cell of the grid.

Quantitative risk assessment

The quantitative risk map has been produced on a continuous 
scale in which numerical values indicate the distribution of risk 
expressed by the probability of expected losses for the elements at 
risk (Peng et al. 2015). QRA is performed separately for each type 
of element (specific risk), and the results are then integrated into a 
map of total risk by combining all maps of specific risk (total risk). 
In this work, two specific risk maps were produced: a building risk 
map and a land use risk map.

The specific risk of the buildings has been computed:

where Rb is the expected economic damages for buildings, H is the 
susceptibility, Vb is the vulnerability of the buildings, and Eb is the 
exposure of buildings.

Specific risk of lands use has been computed:

where Rlu is the expected economic damages for land use, H is the 
susceptibility, Vlu is the vulnerability to land use, and Elu is the 
exposure to land use.

The total risk is the sum of the specific risks of building and 
land use:

(3)Rb(I) = H ⋅ Vb(I) ⋅ Eb

(4)Rlu = H ⋅ Vlu(I) ⋅ Elu

Calibration of the risk components

The main drawback of the methodologies based on relational 
matrixes is the risk of being affected by a relevant degree of sub-
jectivity and uncertainty. In the proposed procedure, 13 distinct 
parameters (e.g. H, I, V, …) are taken into account; some of them 
are classified into classes, and some are combined into 3 matrixes. 
Obviously, the final result will be very sensitive to the subdivision 
into classes and to the way such classes are arranged together to 
define the matrix outputs. Consequently, a calibration procedure 
was necessary to reduce the subjectivity and uncertainty. The 
matrixes shown in the methodology section are the final version 
of a long process of calibration (involving the class break values and 
the input–output combination) that can be summarized as follows:

First, all matrixes were defined as leveraging, whenever possible, 
the literature criteria (the methodology sections provide references 
to the related works). However, most of the steps of the procedures 
were novel, and reference works are lacking. In these circumstances, 
we resorted to the Delphi method (Rowe and Wright 1999; Cairns 
and Wright 2018) to draft a first tentative version of the matrix. 
Basically, the Delphi method consists of gathering a number of 
experts, interviewing them on the matter, and summarizing their 
expert judgement. Although widely used (Qing 2008; Hayati et al. 
2013; Kaufmann 2016), this method is highly subjective; therefore, it 
was used only as a starting point for the real calibration procedure.

Later, all draft matrixes were calibrated in the field. An initial series 
of field surveys was carried out to check, at representative locations, 
the consistency of the matrixes with the field evidence. The sites were 
selected based on the occurrences of the matrixes according to two pri-
orities: (a) some matrix combinations needed to be refined because the 
Delphi method resulted in divergent expert judgements; (b) in some 
spatial units, unreasonable final or intermediate results were obtained, 
highlighting the need to recalibrate some steps of the procedure. The 
site investigations were performed either in long campaigns during 
a single day over a relatively wide area (a 15 km2 rectangular block 
composed of 3 × 5 spatial units) or in more focused investigations 
on a smaller area (usually one or two spatial units). In both cases, 
the site was surveyed, checking all of the passages of the procedure, 

(5)Rtot = Rb + Rlu

CALCULATION
INTERSECTION

and 
AGGREGATION

CLASSIFICATION
Istat Census

Sections

Resistance

Contingency Matrix

Vulnerability

Intensity

X

Resistance Intensity

Vulnerability

Fig. 4   Flowchart of the building vulnerability assessment

Table 5   Land use classification based on the CORINE-Land Cover 
classes

CORINE-Land Cover classes Land use classes

2.1–2.3–2.4 Agricultural areas

2.2 Permanent crops

3.1 Woods

3.2–3.3 Grasslands

4–5 Water
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highlighting the discrepancies with the observed field evidence and 
hypothesizing corrections during the calibration process.

For the recalibration of the procedure, we also selected all 
sites inside the study area where the personnel involved in this 
work had recently worked in the framework of other site-specific 
research projects on landslide risk. Detailed reports were avail-
able, and the sites had already been surveyed in the recent past. 
This “delayed” recalibration provided additional data to corrob-
orate the recalibration proposal coming from the former step 
of the calibration procedure. This procedure continued until all 
matrixes were supported by at least 2 convergent pieces of evi-
dence collected in different locations and all contrasting hypoth-
eses were proven wrong or less reliable.

To provide an independent validation of the matrix relations, 
another series of faster field surveys was carried out to check if 
the calibrated matrixes were also valid in different settings. Since 
this last check substantially confirmed the matrix calibration as 
described in the methodology section, we considered this version 
as the final version, and we adopted it to perform the quantitative 
risk assessment.

On the whole, 129 spatial units were directly investigated on 
site, 59 were inspected indirectly, resorting to previous works 
(delayed surveys) and 70 were surveyed to validate the final ver-
sion of the matrix calibration. From Fig. 6, it is clear that the 
pixels investigated are not evenly distributed. This is not neces-
sarily a drawback, and it is due to several reasons: sites for direct 

inspections were not selected randomly or according to a regular 
survey grid but were selected based on the spatial location of 
the most problematic (e.g. uncertain or unreasonable results) 
matrix occurrences. Moreover, throughout most of the research 
project, movement across the test site was restricted due to the 
COVID-19 pandemic; consequently, surveys on spots away from 
the research team’s headquarters or residences were possible only 
during the last part of the fieldwork (fast validation surveys), 
where more homogeneous coverage of the test site was pursued 
(Fig. 5). Finally, the location of the “delayed survey” sites could 
not be selected since they corresponded to the test sites of former 
research projects.

Results

Hazard
The spatial distribution of hazards, defined as the spatial probabil-
ity of landslide occurrence (cf. Methodology section), is reported 
in Fig. 6. Hazard values theoretically range from 0 to 1 but actually 
span from 0.11 to 1, as the areas where landslides are not expected as 
a geomorphological process (e.g. wide alluvial plains and flat areas) 
were filtered off to reduce the computation time. Landslide hazards 
are lower in the gentle hills occupying the south and west sectors 
of the area and in the areas surrounding the intermontane basins. 
From a comparison with Fig. 1, it is clear that the highest hazard 
values can be found in the main reliefs and are also influenced by 

Fig. 5   Location of the site investigation for the calibration process
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the presence of active and quiescent landslides mapped in the IFFI 
inventory.

Vulnerability

The results of the intensity assessment are shown in Fig. 7 based on 
the classification reported in Table 2. The distribution of landslide 
intensity (Fig. 7) at the basin scale shows that the highest classes (I4 
and I3) are more widespread along the Apennine Chain and in the 
Chianti area. The majority of 1 km2 pixels have an intensity class I1 
(44% of pixels), followed by I0 (31%), I2 (19%), I3 (5%) and I4 (1%). 
Only 1% of the total number of pixels, corresponding to a total area 
of 34 km2, had the highest value of intensity (I4).

Building vulnerability has been defined as a function of the 
structural resistance of buildings and the intensity of landslides 
based on the contingency matrix reported in Table 4. The results of 
building resistance, based on Eq. 1, are reported in Fig. 8, while the 
results of building vulnerability are reported in Fig. 9. Structural 
resistance is computed for each census cell and then aggregated at 
a 1 km2 resolution. The values of structural resistance vary from 0 
(null resistance) to 1.3 (maximum resistance in the study area). The 
resistance values were classified into five classes: R0 (low resistance), 
R1 (low to medium resistance), R2 (medium resistance), R3 (medium 
to high resistance) and R4 (high resistance). Based on the resistance 
class percentages (R0: 0.38%, R1: 2.70%, R2: 29.06%, R3: 64.41% and 

R4: 0.25%), it is possible to conclude that the building resistance 
to slow-moving landslides in the study area is mainly medium to 
high. Due to unavailable information for some of the census sec-
tions, 3.20% of the cells had no building resistance information.

The building vulnerability (Fig. 9) is defined through a contin-
gency matrix (Table 4) combining the landslide intensity with the 
structural resistance. In general, it is worth noting that the build-
ing vulnerability to slow-moving landslides within the Arno River 
basin is low, with a prevailing low vulnerability value (0.25). In 
detail, 33% of the cells have a vulnerability value of 0 (class V0), 
54.7% have a vulnerability value of 0.25 (V1), 12% have a vulner-
ability value of 0.50 (V2), 0.3% have a vulnerability value of 0.75 
(V3) and 0% have a vulnerability value of 1 (V4).

The vulnerability for different land use classes, as defined in 
Table 5, is reported in Fig. 10. The maximum value of vulnerability 
according to the contingency matrix in Table 6 is 0.3 and it occurs 
for the 1 km2 cell with the highest intensity (I4) and the presence 
of permanent crops and woods. The minimum value of land use 
vulnerability is equal to (0) and was verified with intensities I0, I1 
and I2 for greenlands and water and with intensity I0 for all of the 
classes of land use. In general, based on previous studies, we can 
state that the land use vulnerability for slow-moving landslides can 
be considered lower than the building vulnerability.

Fig. 6   Landslide hazard map in the Arno River basin
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Fig. 7   The landslide intensity map in the Arno River basin

Fig. 8   Structural resistance map in the Arno River basin
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Exposure

The building exposure and land use exposure are reported in 
Figs. 11 and 12, respectively. Concerning building exposure, the 
maximum and minimum values per cell are 553 million euros and 
0 euros, respectively. The average value per cell is 6 million euros, 
while the total building exposure is 56 billion euros. The cell with 
the highest value is located in the municipality of Florence. The 
cells with null values of building exposure were 19% of the total 
number of cells. Land use exposure has a maximum value of 5.4 
million euros and is located in the province of Pistoia in the north-
ern part of the basin. The minimum value is 0.134 million euros, 
the average value is 1.5 million euros, and the total sum of land use 
exposure is 10 billion euros.

Risk

The buildings and land use risk maps are reported in Figs. 13 and 14.
The highest value of building risk is 67.89 million euros, and it 

is located in a cell of the municipality of Florence. The minimum 
value per cell is 0, while the average value is 0.896 million euros. 
The total value of the risk for buildings in the Arno River basin is 
6.3 billion euros.

Concerning the land use risk, the cell with the highest value is 
in the municipality of Fiesole (near Florence), and its land use risk 

amounts to 0.809 million euros. The minimum value of this specific 
risk is 0, and the average is 0.050 million euros. The total land use 
risk is 0.35 billion euros.

The map of the total risk is reported in Fig. 15. The highest value 
is approximately 68 million euros, and the cell with this value is the 
same as the highest building risk. This cell reports the following 
parameters: hazard = 0.41, landslide intensity = I2, building vulner-
ability = 0.5, land use vulnerability = 0.09, building exposure = 405 
million euros and land use exposure = 3.6 million euros. The mini-
mum risk value in the study area is 0, the average is 0.946 million 
euros and the total sum is approximately 6.7 billion euros.

In detail, the cells with a risk greater than 1 million euros are 
20% of the total number, and those with a risk greater than 10 mil-
lion euros make up only 1.60%, mostly located within the munici-
pality of Florence; likewise, the cells with a risk equal to 0 are 77% 
of the total.

Discussion

Discussion of the final results
In this work, a methodological framework for slow-moving land-
slide QRA analysis at the regional/national scale is presented. To 
test its applicability, we selected the Arno River basin (Central 
Italy), an area with an extension of 9100 km2 particularly affected 
by this landslide typology. The methodology leverages freely 

Fig. 9   Building vulnerability map in the Arno River basin
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available open data at the Italian national scale to compute the dif-
ferent components of the risk equation with the final aim of obtain-
ing a nationally reproducible and updatable map of landslide risk 
at the national level. The adopted scale of analysis is 1 km2.

For this reason, it is relatively easy to apply and implement com-
mon risk management practices. At the end of the procedure, for 
each cell defined over the whole territory of the Arno River basin, 
many kinds of information are available to support the activities of 
risk managers and local administrators, such as the hazard, inten-
sity, vulnerability and the risk for buildings and land use (expressed 
in terms of economic losses). This framework represents a definite 
development in the field of risk management because it introduces 
an integrated and flexible approach for use by land planners and 
policy makers (Catani et al. 2005). Moreover, the proposed approach 

is scalable and could be upgraded to the national scale: this char-
acteristic was the main idea behind the research approach and 
conditioned the development of all of the steps of the procedure.

An innovative part of the analysis is represented by the building 
vulnerability assessment. Generally, at small-scale analysis, such 
as regional or national analysis, building vulnerability is defined 
as 1 (highest loss) (Glade 2003; Uzielli et al. 2008), while in this 
paper, we have provided a semiquantitative process based on the 
approach proposed by Li et al. (2010) to assess building vulner-
ability at a small scale based on the information provided by ISTAT 
at the national level.

The obtained results show high values of landslide risk in the 
study area, with a total risk of 6.7 billion euros. Inspecting the first 
ten cells with the highest risk values, we discover that seven of them 
are located in the hilly portion of the Florence municipality where 
the exposure of the elements, with special reference to buildings, is 
very high. Building exposure has a relevant weight in the definition 
of the total risk: on average, building exposure is five times higher 
than land use exposure, and this difference is further amplified by 
vulnerability, which is typically higher for buildings than for land 
use: the specific risk of buildings is ten times higher than that of 
land use.

The finding that the building exposure has a fundamental weight 
in the risk values can also be observed in Fig. 16: in panels a, b and 
c, the hazard and risk values of the whole cells of the Arno River 
basin are compared, while panels d, e and f compare the values of 

Fig. 10   The land use vulnerability map in the Arno River basin

Table 6   Contingency matrix of the land use vulnerability

Land use classes V (I0) V (I1) V (I2) V (I3) V 
(I4)

Agricultural areas 0 0.05 0.1 0.15 0.2

Permanent crops 0 0.05 0.1 0.2 0.3

Woods 0 0.05 0.1 0.2 0.3

Grasslands 0 0 0 0.05 0.1

Water 0 0 0 0.05 0.1
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Fig. 11   Building exposure (€) map in the Arno River basin

Fig. 12   The land use exposure (€) map in the Arno River basin



Landslides 

Original Paper

Landslides 

the landslide index and risk. Concerning panels a, b and c, it is pos-
sible to observe that there is no relationship between the increase 
in hazard and total risk values and building values (Fig. 16a and b). 
There is instead a slight relationship between the land use risk and 
hazard, meaning that with the increase of the hazard, there is the 
increase of risk values related to land use. If we look at the com-
parison between the landslide index (percentage of landslide areas 
within each cell) and total and building risk, the situation is similar. 
The highest values of the landslide index do not correspond to the 
highest values of total risk and building risk (Fig. 16d and e). Nev-
ertheless, it is possible to observe an increase in land use risk values 
with the increase in the landslide index. Moreover, the figure proves 
once more that the total risk value is dominated by the building risk 
(the same point patterns in panels a, b, d and e of Fig. 16).

Further insight into the patterns of the points in Fig. 16 reveals 
additional useful information on the results of the risk assessment. 
Panels b and e of Fig. 16 clearly show that there is no systematic 
correspondence between hazard and risk. This is not surprising, 
as good urban planning demands buildings to avoid hazardous 
areas (or areas where landslides are mapped). This is especially 

true, as in recent decades, national and regional laws have posed 
heavy building restrictions in the most hazardous areas. However, it 
should be noted that in the studied area, landslide hazard areas can-
not be completely avoided, which would require directing building 
activities towards only flat plains, but in most cases, such areas are 
restricted since they are severely exposed to flood hazards. Iadanza 
et al. (2021) showed this concept very well for the whole Italian ter-
ritory, and the Arno River basin is no exception.

These results of landslide risk assessment for the Arno River 
basin and the abovementioned analysis can lead to some general 
considerations and can highlight future analyses to be carried out: 
(i) the landslide QRA values related to buildings are much higher 
than for land use; (ii) the highest values of building risks per cells 
are not directly related to landslide prone areas, meaning that the 
most hazardous areas have been avoided by building activity; on 
the contrary, if the hazard or landslide index increases, land use 
risk increases, meaning in general that most hazardous areas are 
located far from building structures and that the values of building 
exposure in urban areas contribute to the risk values.

Main limitations and perspectives of future improvements

Although the present methodology represents a step forward 
towards the application of QRA in very large areas, several issues 

Fig. 13   Landslide risk of buildings (euro) map in the Arno River basin
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remain unresolved. In this section, the main drawbacks are identi-
fied and discussed, providing some general insights on how they 
could be addressed in future developments of the research: the need 
to explicitly account for a time dimension in the analysis, a more 
thorough parameterization of the exposure, additional calibration/
validation procedures and the impact of using more accurate input 
data to get to more reliable results.

The result of every methodology is sensitive to the quality and 
accuracy of the input data, consequently it is important to check how 
the results are affected if different source data are used. In particular, 
we tested to what extent a landslide susceptibility map of higher 
accuracy can influence the results. In the previous part of the work, 
the susceptibility map developed by Trigila et al. (2013) was used 
because it is the only one available for the whole territory of Italy, 
despite the relatively low AUC values (0.76). We repeated the whole 
methodology using a susceptibility input data, another susceptibil-
ity map, developed by Catani et al. (2013) for the same test area of 
this work, which demonstrated a higher accuracy (0.85). The two 
maps are developed using the same methodology (Random Forest), 
similar model settings and the same original explanatory variables, 
but they have been calibrated and validated with different training 
datasets, extended over the whole Italy (301,000 km2) and over the 
Arno basin (9100 km2), respectively. While the map of Trigila et al. 
(2013) produces a result that is optimized according to the spatial 
distribution of landslides in the whole Italian territory (301,000 

km2), the map of Catani et al. (2013) produces a result that is tailored 
on the characteristics of the Arno basin (9100 km2). The Arno basin 
has a complex geological and geomorphological structure, but it 
can be certainly considered relatively homogeneous, if compared 
to the whole Italian territory. For this reason, the ML result shows 
a higher accuracy in terms of AUC. By running again the proposed 
procedure with this more accurate susceptibility map, results change 
significantly (Fig. 17). The hazard is significantly lower (Fig. 17a): the 
mean value drops from 0.54 to 0.18 and the number of cells with very 
high hazard (i.e. > 0.75) drops from 3.8 to 1%. Of course, the large 
difference in the input susceptibility map influences all the subse-
quent steps of the procedure and produces a final risk map (Fig. 17b) 
that has a similar spatial pattern than the original one (Fig. 15) but 
consistently lower values: the mean risk in the cells of the map drops 
from 0.95 M € to 0.37 €, with low-risk values almost unchanged 
(the number of cells with zero risk value increases only by a 1%) and 
high-risk values drastically cut by the lower hazard values (e.g. the 
highest risk cell diminishes its value from 68 to 27 M €). Although 
the technical feasibility of the proposed framework is not in doubt, 
this test shows that for a reliable application at the national scale, 
more accurate input data (including a more trustworthy susceptibil-
ity map) should be used and, if not already available, prepared as a 
result of separate or associated research activities.

A structural limitation of the proposed procedure is that hazard 
is defined only in terms of spatial probability of occurrence, thus at 

Fig. 14   Landslide risk of land use (euro) in the Arno River basin
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the end of the proposed procedure, a static risk indicator is defined. 
Indeed, one of the main challenges of future research developments 
is to include in the procedure the evaluation of the temporal prob-
ability occurrence of landslides to get mid-term and long-term risk 
scenarios. At present, this task is hardly feasible at the national scale 
but with the ongoing developments in the fields of climate change 
characterization, statistical rainfall thresholds definition and set-
ting up of updated and reliable landslide catalogues, we are confi-
dent that research progresses will be possible on this account.

Another shortcoming of the proposed procedure, which is com-
mon to most of the small-scale works on QRA, is that the defini-
tion of the expected impact of the natural hazards on the society 
depends mainly on the market value of buildings and land. This 
oversimplification may seem reasonable from the point of view of 
a landslide scholar, but it is very limited from the perspective of 
economics and econometry: the impacts of natural hazards may 
extend beyond direct damages or depreciation of buildings and 

may affect the probability of firms survival and their performances 
(with all connected indirect impacts) (Basker and Miranda 2018; 
Okubo and Strobl 2021). To obtain a more thorough assessment of 
landslide risk and possible impacts on the society, the next steps 
of the research will benefit from a closer collaboration between 
different fields of research to include econometric techniques in 
the definition of exposure.

Moreover, the next developments would include an improved 
calibration and a quantitative validation procedure considering 
information from different sources, including data on the financial 
expenses used for landslide risk mitigation in the Arno River to 
verify if the data retrieved in the analysis are reliable and sound.

Conclusion
Landslides represent a worldwide natural hazard for human life and 
buildings, especially Italy, which is one of the countries with the high-
est exposure to hydrogeological risk. QRA plays a fundamental role 
in risk mitigation and management. The objective of this paper is 
to define and test a QRA methodological approach for slow-moving 
landslides in terms of expected damage to buildings and land use 

Fig. 15   Total landslide risk (euro) map in the Arno River basin
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Fig. 16   QRA values versus hazard and landslide index values. Total risk (panels a and d); building risk (panels b and e); land use risk (panels c 
and f)
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Fig. 17   Hazard map based on the susceptibility map performed by Catani et al. (2013) (panel a); Total landslide risk map resulting from the 
above hazard map (panel b)
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replicable at the national scale. The procedure was performed at a 1 
km2 analysis scale and was tested in the Arno River basin, where most 
landslides are slow-moving. The risk assessment was based on the 
equation proposed by the Varnes and IAEG Commission on Land-
slides (1984), where risk = hazard × vulnerability × exposure.

The input data, aiming for national replicability of the method-
ology, are open and homogeneous for all Italian territories. Hazards 
were obtained by updating a previous susceptibility map (Trigila 
et al. 2013) with the IFFI database. Building vulnerability was deter-
mined through a semiquantitative process involving the structural 
resistance retrieved from the ISTAT data. Land use vulnerability 
was calculated thanks to an intersection between land use classes 
(CORINE-Land Cover database) and landslide intensity. Buildings 
and land use exposure were provided through average market val-
ues from OMI and VAM data, respectively. The parameters and the 
methods that we have used have been calibrated through field sur-
veys or former project reports, which led us to the final versions of 
the procedures described in this paper.

The proposed procedure represents an advance in the applica-
tion of QRA to very broad areas; nevertheless, the obtained results 
show a high value of total risk. For instance, the maximum risk 
calculated in a single spatial unit is 68 million euros, the total risk 
for the whole area is approximately 7 billion euros and the average 
value is 0.946 million euros. These high results are mainly due to 
the adopted scale of work, which has emphasized the great urban 
centres, so the buildings exposure is included in the risk assess-
ment. Nevertheless, the proposed approach presents several nov-
elties, such as the scale of the study, the possibility of replication 
at the national scale and the procedure for building vulnerability 
assessment. Concerning future developments, the definition of the 
“hazard” and “exposure” terms of the risk equation could be further 
improved, and a validation process must be carried out taking into 
account expenses related to mitigation measures of landslides.
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