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Introduction 

A multiple sequence alignment (MSA) is a sequence alignment of three or more 
biological sequences, generally protein or DNA. In many cases, the input set of 
query sequences are assumed to have an evolutionary relationship by which 
they share a lineage and are descended from a common ancestor. 

Example: A multiple sequence alignment corresponding to the WW domain 
(Source: SMART database) 

 
O54971/1-33       PLPPGWEKRT DSN-GRVYFV N---HNTRIT QWEDPRS 
O43165/1-33       GLPSGWEERK DAK-GRTYYV N---HNNRTT TWTRPIM 
NED4_HUMAN/1-33   PLPPGWEERT HTD-GRIFYI N---HNIKRT QWEDPRL 
O14326/1-33       PLPSGWEMRL TNS-ARVYFV D---HNTKTT TWDDPRL 
O43165_2/1-33     FLPPGWEMRI APN-GRPFFI D---HNTKTT TWEDPRL 
PIN1_HUMAN/1-34   KLPPGWEKRM SRSSGRVYYF N---HITNAS QWERPSG 
NED4_HUMAN_1/1-0  PLPPGWEERQ DIL-GRTYYV N---HESRRT QWKRPTP 
O75853/1-33       PLPPGWEVRS TVS-GRIYFV D---HNNRTT QFTDPRL 
PUB1_SCHPO_2/1-0  RLPPGWERRT DNL-GRTYYV D---HNTRST TWIRPNL 
YA65_CHICK/1-33   PLPPGWEMAK TPS-GQRYFL N---HIDQTT TWQDPRK 
I83196_2/1-33     GLPPGWEEKQ DDR-GRSYYV D---HNSKTT TWSKPTM 
YA65_MOUSE/1-33   PLPDGWEQAM TQD-GEVYYI N---HKNKTT SWLDPRL 

 

Multiple sequence alignment also refers to the process of aligning such 
sequence set. Because three or more sequences of biologically relevant length 
can be difficult and are almost always time-consuming to align by hand, 
computational algorithms are used to produce and analyze the alignments. 
MSAs require more sophisticated methodologies than pair-wise alignments 
because they are more computationally complex. Most multiple alignment 
programs use heuristic methods (see box) rather than global optimization 
because identifying the optimal alignment between more than a few sequences 
of moderate length is prohibitively computationally expensive. 

Heuristic: In computer science, a heuristic is a technique designed to solve a 
problem that ignores whether the solution can be proven to be correct, but 
which usually produces a good solution or solves a simpler problem that 

contains or intersects with the solution of the more complex problem. 

Alignment is not a single problem but rather a collection of many quite diverse 
questions that all have in common the search for sequence similarity. Starting 
from the definition of alignment, there are two biologically meaningful 
formulations – one based on the desire to find evolutionary relationships and 
one based on the desire to find putative functional relationships. 

Given the amino acid sequences of a set of proteins to be compared, an 
alignment displays the residues for each protein on a single line, with gaps (“–
”) inserted such that “equivalent” residues appear in the same column. The 
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precise meaning of equivalence is generally context dependent: for the 
phylogeneticist, equivalent residues have common evolutionary ancestry; for 
the structural biologist, equivalent residues correspond to analogous positions 
belonging to homologous folds in a set of proteins; for the molecular biologist, 
equivalent residues play similar functional roles in their corresponding 
proteins. In each case, an alignment provides a bird’s eye view of the 
underlying evolutionary, structural, or functional constraints characterizing a 
protein family in a concise, visually intuitive format. 

Many bioinformatic methods rely on MSAs. Success of methods relies on 
quality of alignment. MSA a difficult problem, although current automatic 
approaches are good, usually they can be improved by human intervention to 
yield better alignments and hence better analysis. It is difficult to teach how to 
do this well - depends on obtaining experience. This course aims to provide a 
starting point to obtain this experience. 

A typical multiple sequence alignment workflow will be: 

1. Clearly formulate the question you want to answer. E.g.: “What is the 
secondary structure prediction for protein sequence” 

2. Collect a set of sequences to address this question. E.g. using a 
BLAST database search. 

3. Create and examine initial automatic MSA. E.g. align using Clustal 
and examine in JalView 

4. Adjust the set of sequences to obtain an optimal set. E.g. remove 
unrelated sequences, add sequences from additional searches. 

5. Manually adjust alignment to correct automatically-introduced 
errors. 

Some notes on protein evolution 
The evolutionary variations of a protein provide much information about the 
protein itself. Evolutionary divergence into different species has resulted in 
many variants of the same protein, all with essentially the same biological 
function but different amino acid sequences. The differences and similarities 
of the amino acid sequences of these variants reflect the constraints of 
structure and function for that protein. 

The number of possible RNA, DNA, or protein sequences is so great that it is 
implausible that similar long sequences could have arisen by any mechanism 
other than evolutionary divergence from the same ancestor. 

Nucleic acids and proteins that have evolved from a common ancestor are said 
to be homologous. The sequences of homologous genes and proteins were 
identical at the time they originated by replication of a single gene. 
Subsequently the two genes accumulate mutational changes, and the 
sequences of homologous genes and proteins can be identical, similar to 
varying degrees, or unrecognizably dissimilar because of extensive mutation. 

Proteins and genes are either homologous or not, because they either did or 
did not descent from a common ancestor. 

The only explanation other than divergence for similarities among sequences is 
convergence, in which two or more unrelated sequences have become similar 
under the pressure selection for similar functions. Convergence is a fairly 
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common evolutionary phenomenon at the macroscopic level and is even 
encountered at the level of protein three-dimensional structure. There are, 
however, no instances in which nucleic acid or protein sequences have been 
shown conclusively to have become substantially similar by convergence. On 
the other hand, proving evolutionary convergence only from extant sequences 
is inherently difficult, so the possibility cannot be dismissed completely. 

Mutations 

Mutations are both the raw material and the driving for of evolution, whereas 
natural selection modulates the rate of divergence. 

A variety of mutations occur to DNA and RNA, by numerous and complex 
mechanisms. Simplest and most frequent is the replacement of one nucleotide 
by another; insertions and deletions of one or more nucleotides are also 
common. More complex rearrangements of DNA are less common but of 
greater consequence. 

Variation among species 
The more closely related the organisms, the more similar the sequences of 
their genes and proteins are found to be. Closely related proteins generally 
differ only by replacement of one amino acid by another at a few positions in 
the polypeptide chain. Less frequent are differences in the total number of 
residues, which are due to the deletion or insertion of residues within or at 
either end of the polypeptide chain. In more distant relationships, the 
numbers and natures of sequence differences can increase greatly. 

In general, the amino acid replacements that occur during protein divergence 
are non random, both in the extent to which various residues change and in 
the number of amino acids that replace each other. The most prevalent 
replacements occur between amino acids with similar side chains. This bias in 
amino acid replacements presumably reflects the role of selection; only those 
mutations that do not disrupt the function of the protein survive. 

Variation within species 

DNA is known to be a very dynamic molecule that undergoes a wide variety of 
alterations and modifications, and gene duplications occur naturally and 
frequently. With two copies of a gene available in a genome, one copy could 
provide the necessary original function while the other accumulated mutations 
that altered its function. If this altered copy evolved eventually to serve a new 
function, it would tend to be retained in the genome and passed on to later 
generations. 

Many genes and proteins of an organism are homologous and are obviously 
the products of gene duplication. The genes of such homologous proteins in a 
genome are said to comprise a gene family. 

Genes that occupy the same gene locus in different species, and protein 
products of such genes, are said to be orthologous, whereas genes at different 
loci that are related by gene duplication are designated paralogous (see Figure 
1). The phylogenies of species can be reconstructed only by comparing 
orthologous genes. The differences between paralogous genes or proteins from 
different species are not related to the time since divergence of the species, but 
to the time since gene duplication. 
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Figure 1: Illustration of homologous relationships: orthologs and paralogs. 

Domain shuffling 
Many proteins, especially those unique to vertebrates, have mosaic structure 
in which various segments appear to have had different origins. Such a 
protein gives the impression of having been assembled by stringing modules 
together. Each module usually corresponds to an entire structural and 
functional domain of a protein.  

Several different molecular mechanisms for domain shuffling have been 
proposed. Since the domains are often correlated with exon boundaries, exon 
shuffling is believed to be one of the major forces driving domain shuffling. 
Some other mechanisms might have been involved in domains shuffling, such 
as the simple fusion of genes and recruitment of mobile elements. 

 



  9 

Finding sequences to align 

Very often the selection of sequences to align will be made using sequence 
similarity searches against a sequence database. The most commonly 
programs to perform these searches are the BLAST suite. 

Because searches on a sequence database are perform using successive pair-
wise alignments with the query sequence and each sequence in the database, 
it is convenient to revise some fundamentals concepts of pair-wise sequence 
alignments. 

Fundamentals: pair-wise sequence alignment 
Let a = (a1, . . . , am) and b = (b1, . . . , bn) be two sequences and a set of 
elementary operations including insertion, deletion, and substitution. 

An alignment of a and b is a one-to-one correspondence such that each 
element of one sequence corresponds either to an element of the opposite 
sequence or to a null element indicating the presence of a gap.  

There are two types of sequence alignment, 
global and local. In global alignment, an 
attempt is made to align the entire sequence, 
using as many residues, up to both ends of 
each sequence. Sequences that are quite 
similar and approximately the same length 
are suitable candidates for global alignment. 

In local alignment, stretches of sequence with the highest density of matches 
are aligned, thus generating one or more islands of matches or subalignments 
in the aligned sequences. Local alignments are more suitable for aligning 
sequences that are similar along some of their lengths but dissimilar in others, 
sequences that differ in length or sequences that share a conserved region or 
domain. 

Similarity scores 
In contrast to homology, similarity is a quantitative measure and therefore we 
need to establish a numerical value from the sequence alignment. Many 
different methods have been proposed and used to address the question of an 
appropriate measure of similarity. 

The simplest method involves counting the proportion of identical residues in 
aligned sequences relative to the alignment overall length, including gaps. This 
provides a percentage of identity that also takes into account the size of all 
gaps in the alignment. 
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A more complete method, like the ones used in most pair-wise alignments, 
computes a score for the sequence alignment by summing individual scores 
for stacked residues and subtracting a penalty for gaps: 

• Individual scores for aligning residues are provided by scoring 
matrices, the simplest one being the identity matrix scoring 1 for 
identical residues and 0 otherwise. Many other matrices have also been 
designed to reflect amino acid properties. These replacement scores 
were either computed from physical and chemical properties or from 
observed frequencies of replacement of an amino acid by another in 
related proteins. Although real properties would seem to provide the 
most rational similarity scale, statistical scores actually reflect the effect 
of these properties on protein evolution and mutations allowed by 
natural selection. Statistical matrices eventually proved to be the most 
efficient ones and today, most similarity search programs use the 
statistical BLOSUM or PAM matrices built from reference alignments. 

• The most widely used gap penalty is the so-called affine gap penalty. It 
is computed as a linear function of the number of gaps and their total 
length. Parameters provide control over the relative importance of 
number and length of gaps: a larger “gap opening penalty” will favor 
fewer but somewhat larger gaps, whereas a larger “gap extension 
penalty” would give preference to small gaps. 

Some examples of different scoring methods are provided in figure 2 examples 
of alignment scores 

Figure 2: Examples of scores methods 

Scoring matrices 

In the scoring matrices, also known as amino acid substitution matrices, 
amino acids are listed both across the top of a matrix and down the side, and 
each matrix position is filled with a score that reflects how often one amino 
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acid would have been paired with the other in an alignment of related protein 
sequences. 

All modern amino acid score matrices are estimated from frequencies observed 
in trusted alignment data, using some procedure to make a series of related 
matrices that are appropriate for different expected divergence. 

PAM (Percent Accepted Mutation) matrices 

This family of matrices lists the likelihood of change from one amino acid to 
another in homologous protein sequences during evolution. Each matrix gives 
the changes expected for a given period of evolutionary time, evidenced by 
decreased sequence similarity as genes encoding the same protein diverge with 
increased evolutionary time.  

The PAM matrices are normalized so that, for instance, the PAM1 matrix gives 
substitution probabilities for sequences that have experienced one point 
mutation for every hundred amino acids. The mutations may overlap so that 
the sequences reflected in the PAM250 matrix have experienced 250 mutation 
events for every 100 amino acids, yet only 80 out of every 100 amino acids 
have been affected. 

This type of matrix is commonly known as a substitution matrix. Substitution 
matrices are used to derive scoring matrices used to assess the similarity of 
two aligned sequences. For example, an 18% probability of replacing arginine 
with lysine (in the substitution matrix) is turned into a score of 3 in the 
scoring matrix. The calculation uses the ratio of the probability value and the 
frequency of the original amino acid (arginine) in known sequences, known as 
the log-odds ratio. 

BLOSUM 

 

Figure 3: BLOSUM62 scoring matrix 

Henikoff & Henikoff took a big database of trusted alignments (the BLOCKS 
database), and counted pair-wise sequence alignments related by less than 
some threshold percentage identity. A threshold of 62% identity or less 
resulted in the target frequencies for the BLOSUM62 matrix. An 80% 
threshold gave the more highly conserved target frequencies of the BLOSUM80 
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matrix, and a 45% threshold gave the more divergent BLOSUM45 matrix. 
Empirically, the BLOSUM matrices have performed very well. BLOSUM62 has 
become a de facto standard for many protein alignment programs. 

Generally speaking: 

• The BLOSUM matrices are best for detecting local alignments 

• BLOSUM62 is the best for detecting the majority of weak protein 
similarities (and the matrix used as default in most alignment 
programs) 

• BLOSUM45 is the best for long and weak protein similarities. 

Table 1: equivalences of PAM and BLOSUM matrices 

 

PAM100 BLOSUM90 

PAM120 BLOSUM80 

PAM160 BLOSUM60 

PAM200 BLOSUM52 

PAM250 BLOSUM45 

 

Algorithms (Dynamic programming) 
In mathematics and computer science, dynamic programming is a method for 
solving complex problems by breaking them down into simpler subproblems. 
The key idea is quite simple. In general, to solve a given problem, we need to 
solve different parts of the problem (subproblems), then combine the solutions 
of the subproblems to reach the overall solution. The dynamic programming 
approach seeks to solve each subproblem only once, thus reducing the 
number of computations. 

Dynamic programming is a computational method that is used to align two 
protein or nucleic acid sequences. It provides the very best or optimal 
alignment between sequences. Both global and local types of alignments may 
be made by simple changes in the basic dynamic programming algorithm. A 
global alignment program is based on the Needleman-Wunsch algorithm, and 
a local alignment program on the Smith-Waterman algorithm. 

Typically, the problem consists of transforming one sequence into another, 
using individual operations that either replace, insert, or remove an amino 
acid. Each operation has an associated score, as we have seen previously, and 
the goal is to find the sequence of individual operations with the highest total 
score. 

The problem can be stated naturally as a recursion, a sequence a is optimally 
edited into a sequence b by either: 

1. inserting the first character of b, and performing an optimal alignment 
of a and the tail of b 

2. deleting the first character of a, and performing the optimal alignment 
of the tail of a and b 

3. replacing the first character of a with the first character of b, and 
performing optimal alignments of the tails of a and b. 
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The partial alignments can be tabulated in a matrix, where cell (i,j) contains 
the cost of the optimal alignment of a[1..i] to b[1..j]. The score in cell (i,j) can 
be calculated by adding the score of the relevant operations to the score of its 
neighboring cells, and selecting the optimum. 

Basic Local Alignment Search Tool (BLAST) 
Searching a sequence database for sequences that are similar to a query 
sequence is the most common type of database similarity search. The search 
provides a list of database sequences with which the query sequence can be 
aligned. 

The dynamic programming (DP) method described above is guaranteed to find 
the highest-scoring alignment between two sequences. The time it takes to 
complete the alignment is proportional to the number of DP matrix elements to 
compute, which is the product of the sequence lengths. While this is very fast 
for comparing any two sequences of reasonable length, it is not practical for 
searching the current sequence databases, which contain many millions of 
sequences and many billions of residues. Therefore heuristic methods have 
been developed that can search entire databases much faster. While these 
methods do not guarantee finding the absolute best alignments, they have 
been finely optimized so that they have very high sensitivities and generally do 
obtain the optimal, or near-optimal, alignments. The most commonly used 
method is BLAST. 

The algorithm 
1. The BLAST algorithm begins by fragmenting the sequence into ‘words’ (of 

16-56 nucleotides, or 2-3 amino acids), and, from each word, creating a set 
of acceptable ‘synonyms’ that represent possible changes in sequence due 
to mutation. 

2. Words and their synonyms are scored with respect to how well they match 
the query sequence, based on scoring matrices (e.g. BLOSUM). The words 
that match sufficiently well to have a score above a set threshold value are 
carried forward to compare to all the sequences in the database. 

3. All the sequences in the database are then scanned for the presence of 
these words; sequences carrying two matches within a preset distance from 
each other are set aside until the entire database has been scanned. This 
“short list” of subject sequences is then carried forward by extending the 
alignment outward from the words to determine whether the match 
between the query and subject sequences extends beyond the local match 
between the subject sequence and the word. Initial “rough” alignments are 
extended without gaps to verify that the sequences match beyond the word 
hits. If the threshold score for the “ungapped” alignment is high enough 
that it suggests that the two sequences are indeed homologs, a second 
alignment is undertaken in which gaps are allowed to optimize the 
alignment. The sequences retrieved after these steps are referred to as the 
“subject” sequences. 

It is important to note that alignment between the query and subject 
sequences does not have to cover the full length of the two sequences. 
Therefore, retrieved subject sequences commonly align with only a portion of 
the query sequence—it is this ‘‘local’’ rather than global quality that is more 
than nominally BLAST’s strength.  
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Sometimes it is helpful to mask parts of the query sequence to prevent them 
from being aligned with subject sequences. Masking is helpful when the query 
sequence has low-complexity regions, such as stretches of small hydrophobic 
amino acids that are commonly present in transmembrane helices of integral 
membrane proteins. Because these features arose from convergent evolution, 
and their inclusion in BLAST searches could result in spurious hits, it is best 
to set the BLAST search parameters to eliminate these sorts of regions from 
word generation, as well as alignment scoring. 

Significance of an alignment score 

The extend of the sequence similarity between the subject and query 
sequences is reported as a raw score, S 

 

in which M is the score from a substitution matrix (e.g. BLOSUM62) for a 
particular pair of amino acids i and j, c is the number gaps, O is the penalty 
for the existence of a gap, d is the total length of the gaps, and G is the per-
residue penalty for extending the gap. 

Obtaining a score for an alignment does not, by itself, tell you whether it is 
significant. One needs to determine what is the probability of observing such a 
score by chance, given the scoring system used and the lengths of the 
sequences being compared. 

Bit scores: Because one has the option of using different parameters (e.g. 
scoring matrices) in different BLAST searches, it is ideal to report results in 
such a way as to be able to compare alignments made with different scoring 
matrices or gap penalties. To do this, S’ values (bit scores) are calculated. 

 

in which λ and K depend on the matrices and penalties used. 

E-values:  

If analyses were to stop here, one would have a list of sequences sorted by bit 
scores that would reflect the degree of similarity to the query sequence. But 
how do we know if this similarity is significant, or is it only due to chance? (as 
it is the case of having a large database). 

To address this issue E-values are calculated from bit scores as: 

 

in which n is the total number of residues (amino or nucleic acids) in the 
database, and m is the length of the query sequence. E-values are the number 
of subject sequences that can be expected to be retrieved from the database 
that have a bit score equal to or greater than the one calculated from the 
alignment of the query and subject sequence, based on chance alone. E-values 
for subject sequences that are very similar to the query sequence will be quite 
small, and are widely used as a means to assess the confidence with which 
one should claim the subject sequence sequence(s) and the query sequence as 
homologs. 
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Performing multiple sequence 
alignment 

Most modern programs for constructing multiple sequence alignments (MSAs) 
consist of two components: an objective function for assessing the quality of 
a candidate alignment of a set of input sequences, and an optimization 
procedure for identifying the highest scoring alignment with respect to the 
chosen objective function. 

In the case of multiple sequence alignment for N sequences, the multiple 
alignment score is usually defined to be the summed scores of all N(N – 1)/2 
pair-wise projections of the original candidate MSA to each pair of input 
sequences. This is known as the standard sum-of-pairs (SP) scoring model. 
While other alternatives exist, such as consensus, entropy, or circular sum 
scoring, most alignment methods rely on the SP objective and its variants. 
Unlike the pair-wise case, direct dynamic programming methods cannot be 
applied to perform multiple sequence alignment under the SP scoring model, 
as these would require time and space exponential in N. 

Therefore, most current techniques for SP-based multiple alignment work by 
either applying heuristics to solve the original NP-complete optimization 
problem approximately, or replacing the SP objective entirely with another 
objective whose optimization is tractable. 

 

Figure 4: Diagram of the basic steps in a prototypical modern multiple 
sequence alignment program. 
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Progressive methods 
The most widely used approach to construct a multiple alignment is 
‘progressive alignment' (see Figure XX), whereby a set of N proteins are aligned 
by performing N–1 pair-wise alignments of pairs of proteins or pairs of 
intermediate alignments, guided by a phylogenetic tree connecting the 
sequences. All progressive alignment methods require two stages: a first stage 
in which the relationships between the sequences are represented as a tree, 
called a guide tree, and a second step in which the MSA is built by adding the 
sequences sequentially to the growing MSA according to the guide tree. The 
initial guide tree is determined by an efficient clustering method. 

ClustalW 

The most widely used programs for global multiple sequence alignment are 
from the Clustal series of programs.  

ClustalW performs a global-multiple sequence alignment by the progressive 
method. The steps include: 

a) Perform pair-wise alignment of all the sequences by dynamic 
programming 

b) Use the alignment scores to produce a phylogenetic tree by neighbor-
joining 

c) Align the multiple sequences sequentially, guided by the phylogenetic 
tree 

Thus, the most closely related sequences are aligned first, and then additional 
sequences and groups of sequences are added, guided by the initial 
alignments to produce a multiple sequence alignment showing in each column 
the sequence variations among the sequences. 

Sequence contributions to the multiple sequence alignment are weighted 
according to their relationships on the predicted evolutionary tree. Weights are 
based on the distance of each sequence from the root. The alignment scores 
between two positions of the multiple sequence alignment are then calculated 
using the resulting weights as multiplication factors. 

As more sequences are added to the profile, gaps accumulate and influence 
the alignment of further sequences. ClustalW calculates gaps in a novel way 
designed to place them between conserved domains. Gaps found in the initial 
alignments remain fixed. New gaps are then introduced into the multiple 
alignment when more sequences are added, but gaps can never be deleted, 
only added. ClustalW also implements methods, which try to compensate for 
the scoring matrix (e.g., PAM), expected number of gaps, and differences in 
sequence length. 

T-Coffee 
Another common progressive alignment method called T-Coffee is slower than 
ClustalW and its derivatives but generally produces more accurate alignments 
for distantly related sequence sets. T-Coffee calculates pair-wise alignments by 
combining the direct alignment of the pair with indirect alignments that aligns 
each sequence of the pair to a third sequence. It uses the output from 
ClustalW as well as another local alignment program LALIGN, which finds 
multiple regions of local alignment between two sequences. The resulting 
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alignment and phylogenetic tree are used as a guide to produce new and more 
accurate weighting factors. 

MUSCLE 
MUSCLE (multiple sequence alignment by log-expectation) improves on 
progressive methods with a more accurate distance measure to assess the 
relatedness of two sequences. The distance measure is updated between 
iteration stages (although, in its original form, MUSCLE contained only 2-3 
iterations depending on whether refinement was enabled). 

Iterative methods 
A set of methods to produce MSAs while reducing the errors inherent in 
progressive methods are classified as "iterative" because they work similarly to 
progressive methods but repeatedly realign the initial sequences as well as 
adding new sequences to the growing MSA. One reason progressive methods 
are so strongly dependent on a high-quality initial alignment is the fact that 
these alignments are always incorporated into the final result - that is, once a 
sequence has been aligned into the MSA, its alignment is not considered 
further. This approximation improves efficiency at the cost of accuracy. By 
contrast, iterative methods can return to previously calculated pair-wise 
alignments or sub-MSAs incorporating subsets of the query sequence as a 
means of optimizing a general objective function such as finding a high-quality 
alignment score. 

MAFFT 
MAFFT (multiple alignment using Fast Fourier Transform) is a multiple 
alignment program that offers a range of multiple alignment methods. Among 
them, two different heuristics are implemented: the progressive method (FFT-
NS-2) and the iterative refinement method (FFT-NS-i). 

Table 2: MSA software 

Tool URL 

CLUSTALW www.clustal.org 

DIALIGN bibiserv.techfak.uni-bielefeld.de/dialign/ 

MAFFT mafft.cbrc.jp/alignment/software/ 

MUSCLE www.drive5.com/muscle/ 

PRALINE www.ibi.vu.nl/programs/pralinewww/ 

PROBCONS probcons.stanford.edu/ 

ProDA proda.stanford.edu/ 

PROMALS prodata.swmed.edu/promals/ 

T-Coffee www.tcoffee.org 
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Choosing the right MSA software 
Given the multitude of choices, it can be difficult for a user of multiple 
alignment software to understand the situations in which a particular 
alignment tool is or is not appropriate. When aligning a small number (<20) of 
globally homologous sequences with high percent identity (>40%), most 
modern alignment programs will have no difficulty in returning a correct 
multiple sequence alignment, and no special consideration is needed. When all 
of these conditions do not hold, however, choosing the appropriate tools and 
configuration, while keeping in mind the tradeoff between accuracy and 
computational cost, can be difficult. You can find a list of currently popular 
alignment software (see Table 2) and advice on tool selection (see Fig. 5). 

For more advanced discussion on software selection see (Do & Katoh, 2008). 

 

Figure 5: Decision tree for choosing the right MSA program. 

Alignment visualization and editing 
Once an alignment has been generated, visualization tools allow manual 
identification of regions with reliably predicted homology; many of these tools 
also allow for interactive alignment editing.  

For alignments of sequences with low similarity, post-processing is extremely 
important as most regions in a low-identity alignment will not be reliably 
alignable. 

Visual inspection of an alignment and subsequent identification of potentially 
mis-aligned regions can be greatly helped using hints provided by software 
that highlight such regions. Typically, high confidence aligned regions can be 
identified by looking for groups of residues with strongly conserved 
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physicochemical properties (e.g., hydropathy, polarity, and volume), using 
alternative alignment objective functions for identifying reliable columns, 
using posterior confidences generated by alignment programs such as 
PROBCONS, using the consensus of several alignment methods, or even 
better, cross-referencing aligned positions with amino acid residues in three-
dimensional protein structures.  

Once potential errors have been detected in alignment, they need to be 
corrected. While one can attempt to do this by simply editing the alignment file 
directly using a text editor, this is an error-prone approach instead several 
different pieces of software have been developed to carry out such operations 
interactively. 

Table 3: Alignment visualization programs 

Tool URL 

Jalview www.jalview.org 

SeaView pbil.univ-lyon1.fr/software/seaview.html 

CINEMA www.bioinf.manchester.ac.uk/dbbrowser/CINEMA2.1/ 

STRAP 3d-alignment.eu 

ClustalX www.clustal.org 

ALTAVIST bibiserv.techfak.uni-bielefeld.de/altavist/ 

 

Jalview 
Jalview is a multiple alignment editor written in Java. It is used widely in a 
variety of web pages (e.g. the EBI ClustalW server and the Pfam protein 
domain database) but is available as a general purpose alignment editor. 

 

Figure 6: Jalview interface 
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Representing multiple sequence alignments 
Although most of the time you will represent a multiple sequence alignment as 
a matrix of aligned residues, in some cases it is convenient to use alternative 
representations (as shortcuts or for generation of nice figures). Two of these 
alternative representations are the consensus sequences, and sequence logos. 
Alternative more complex representations will be presented in the next 
sections (Working with profiles). 

Consensus sequence 

Consensus sequence refers to the most common nucleotide or amino acid at a 
particular position after multiple sequences are aligned. A consensus 
sequence is a way of representing the results of a multiple sequence 
alignment, where related sequences are compared to each other, and similar 
functional sequence motifs are found. The consensus sequence shows the 
residues that are most abundant in the alignment at each position. 

Example: WW domain (from SMART database) represented as consensus 
sequences considering 80, 65 and 50%. 

 
O54971/1-33      PLPPGWEKRTDSN-GRVYFVN---HNTRITQWEDPRS 
CONSENSUS/80%    .h..sW..hhs.p.sh.aahs.....stpopWptPt. 
CONSENSUS/65%    slsssWppthsss.GphYYhs...ppocpopWpcPp. 
CONSENSUS/50%    sLPsGWccttsss.G+sYYaN...ppT+copW-cPss 

 

The grouping of amino acids to classes and class abbreviation (the key) used 
within consensus sequences are shown below. 

 

Class Key Residues 

alcohol o S,T 

aliphatic l I,L,V 

any . A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y 

aromatic a F,H,W,Y 

charged c D,E,H,K,R 

hydrophobic h A,C,F,G,H,I,K,L,M,R,T,V,W,Y 

negative - D,E 

polar p C,D,E,H,K,N,Q,R,S,T 

positive + H,K,R 

small s A,C,D,G,N,P,S,T,V 

tiny u A,G,S 

turnlike t A,C,D,E,G,H,K,N,Q,R,S,T 

 

Sequence logos 

Sequence logos are a graphical way for presenting multiple alignments. The 
sequence logo shows how well residues are conserved at each position: the 
fewer the number of residues, the higher the letters will be, because the better 
the conservation is at that position. Different residues at the same position are 
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scaled according to their frequency. The height of the entire stack of residues 
is the information measured in bits. 

 

 

Figure 7: Sequence logo for the Signal peptidases I serine active site 
(PS00501) according to the PROSITE database. 





  23 

Working with profiles 

When a number of member sequences of a protein family has been found, one 
can search for additional family members in at least two different ways. The 
first is to search with each known member against a sequence database. The 
second is to gather information from all known members, form a model for 
describing the properties of the members, and match this against a database 
of sequences. The latter has been shown to be superior in detecting weak 
relationships, i.e. remote family members. A number of different models has 
been applied. Each of these capture information about the family members 
and can be compared with sequences. 
Most common models for the representation of domains and/or families are: 

• Sequence patterns (motifs): these include consensus sequences and 
regular expressions. 

• Position-specific scoring matrices (PSSM) or weight matrices. These 
are constructed from MSAs and represent the variation found in the 
alignment columns. It includes in addition to position-specific scores 
gap penalties to be used when comparing the profile to a sequence. 

• Hidden Markov Models (HMM): these are conserved regions of multiple 
alignments represented as hidden markov models. The HMM is a 
statistical model that considers all possible combinations of matches, 
mismatches , and gaps to generate an alignment of a set of sequences. 

Probabilistic models describing protein domains and families (e.g. PSSMs, 
HMMs) are globally known as profiles (in contrast to deterministic models 
such as sequence patterns). 

Sequence patterns 
When a collection of diverse proteins shares a common function or structure, 
sometimes all that is conserved between them is a few common residues that 
are critical for their structure and function. If the proteins are enzymes, these 
residues are typically those that are involved in the chemical catalysis in the 
active site. 

Sequence patterns are deterministic models: a sequence pattern is either 
matched or not matched by a sequence. The part of a sequence that actually 
matches a pattern is called an occurrence of the pattern. Patterns describing 
biologically meaningful similarities are called motifs. 

These motifs, typically around 10 to 20 amino acids in length, arise because 
specific residues and regions thought or proved to be important to the 
biological function of a group of proteins are conserved in both structure and 
sequence during evolution. These biologically significant regions or residues 
are generally: 

• Enzyme catalytic sites. 
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• Prostethic group attachment sites (heme, pyridoxal-phosphate, biotin, 
etc.). 

• Amino acids involved in binding a metal ion.  

• Cysteines involved in disulphide bonds. 

• Regions involved in binding a molecule (ADP/ATP, GDP/GTP, calcium, 
DNA, etc.) or another protein 

Different languages (or formalisms) for describing patterns exist, and for any 
language there is a mechanism for deciding whether or not a sequence 
matches a pattern. Here, we will focus on the PROSITE patterns. 

PROSITE patterns 
PROSITE is a database of protein families and domains. The PROSITE 
language for sequential patterns is described by the following: 

− the standard one-letter codes for amino acids are used 

− the symbol 'x' is used for an arbitrary amino acid 

− ambiguities are listed between square paranthenses '[ ]'. For example, 
[AGL] stands for Ala or Gly or Leu. 

− Amino acids that are not accepted at a given position are listed between 
curly brackets'{ }'. For example, {CH} stands for any amino acid except 
Cys and His. 

− '-' is used for separating the elements 

− Repetition of an element is specified with a numerical value or a 
numerical range between parentheses, such that x(3) corresponds to x-
x-x and x(1,3) corresponds to x or x-x or x-x-x. 

− When a pattern is restricted to either the N- or C-terminal of a 
sequence, that pattern either starts with a '<' symbol or ends with a '>' 
symbol. 

− A period ends the pattern 

For example, the pattern corresponding to the Signal peptidases I serine active 
site (PS00501) is represented as 

[ G S ] - { P R } - S - M - { R S } - [ P S ] - [ A T ] - [ L F ]  

Position-specific scoring matrices (PSSM) 
The PSSM is constructed by a simple logarithmic transformation of a matrix 
giving the frequency of each amino acid in each position of a motif. Rows 
correspond to a position of the motif. The first 20 columns of each row specify 
the score for finding, at that position each of the 20 amino acid residues. An 
additional column contains a penalty for insertions or deletions at that 
position.  

Two considerations arise in trying to tune the PSSM so that it adequately 
represents the training sequences. First, if the number of sequences with the 
found motif is large and reasonably diverse, the sequences represent a good 
statistical sampling of all sequences that are ever likely to be found with that 
same motif. 
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Hidden Markov Models (HMM) 
The HMM is a statistical model that considers all possible combinations of 
matches, mismatches, and gaps to generate an alignment of a set of sequences 
(see Figure 8). 

The two HMM programs in common use are Sequence Alignment and Modeling 
Software System (SAM), and HMMER. 

 

Figure 8: The structure of a Hidden Markov Model. Diamonds represent insert 
states and circles delete states.  

Domain/Family databases 
There are a few databases available on the characterised protein families, 
domains and sites. These databases are constructed using different 
methodologies (e.g. sequence patterns, PSSMs, HMMs) and a varying degree of 
biological information. 

These secondary protein sequence databases have become vital tools for 
identifying distant relationships in novel sequences and hence for inferring 
protein function. These databases have evolved by using signature-recognition 
methods to address different sequence analysis problems, resulting in rather 
different and independent databases (e.g. PROSITE, Pfam, PRINTS, etc). 

While all of the resources share a common interest in protein sequence 
classification, some such as Pfam focus on divergent domains, some such as 
PROSITE focus on functional sites, and others such as PRINTS focus on 
families, specialising in hierarchical definitions from super-family down to 
sub-family levels in order to pin-point specific functions. A number of 
sequence cluster databases such as ProDom are also commonly used in 
sequence analysis, for example to facilitate domain identification. 

Unfortunately, these secondary databases do not share the same formats and 
nomenclature as each other, which makes the use of all of them in an 
automated way difficult. In response to this the UniProtKB/Swiss-Prot group 
at the EBI has developed the “Integrated resource of Protein domains and 
functional sites” more commonly known as InterPro. 
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Pfam 

The Pfam database is a large collection of protein families, each represented by 
multiple sequence alignments and hidden Markov models. 

The database comprises two main collections of information. Pfam-A 
comprises high-quality entries that have been curated manually. To extend the 
sequence coverage of Pfam, an additional area of the Pfam database, Pfam-B, 
contains automatically curated entries that are of a lower quality but add 
valuable coverage for regions not yet curated and stored in Pfam-A. 

SMART 

SMART (a Simple Modular Architecture Research Tool) allows the 
identification and annotation of genetically mobile elements and the analysis 
of domain architectures. More than 500 domain families found in signalling, 
extracellular and chromatin-associated proteins are detectable. These domains 
are extensively annotated with respect to phyletic distributions, functional 
class, tertiary structures and functionally important residues. Each domain 
found in a non-redundant protein database as well as search parameters and 
taxonomic information are stored. 

InterPro 
InterPro is an integrated documentation resource for protein families, 
domains, regions and sites. InterPro combines a number of databases (referred 
to as member databases) that use different methodologies and a varying 
degree of biological information on well-characterised proteins to derive 
protein signatures. By uniting the member databases, InterPro capitalises on 
their individual strengths, producing a powerful integrated database and 
diagnostic tool (InterProScan).  

The member databases use a number of approaches: 

1. ProDom: provider of sequence-clusters built from UniProtKB using PSI-
BLAST.  

2. PROSITE patterns: provider of simple regular expressions.  

3. PROSITE and HAMAP profiles: provide sequence matrices.  

4. PRINTS provider of fingerprints, which are groups of aligned, un-
weighted Position Specific Sequence Matrices (PSSMs).  

5. PANTHER, PIRSF, Pfam, SMART, TIGRFAMs, Gene3D and 
SUPERFAMILY: are providers of hidden Markov models (HMMs).  

Diagnostically, these resources have different areas of optimum application 
owing to the different underlying analysis methods. In terms of family 
coverage, the protein signature databases are similar in size but differ in 
content. While all of the methods share a common interest in protein sequence 
classification, some focus on divergent domains (e.g., Pfam), some focus on 
functional sites (e.g., PROSITE), and others focus on families, specialising in 
hierarchical definitions from superfamily down to subfamily levels in order to 
pin-point specific functions (e.g., PRINTS). TIGRFAMs focus on building HMMs 
for functionally equivalent proteins and PIRSF always produce HMMs over the 
full length of a protein and have protein length restrictions to gather family 
members. HAMAP profiles are manually created by expert curators they 
identify proteins that are part of well-conserved bacterial, archaeal and 
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plastid-encoded proteins families or subfamilies. PANTHER build HMMs based 
on the divergence of function within families. SUPERFAMILY and Gene3D are 
based on structure using the SCOP and CATH superfamilies, respectively, as a 
basis for building HMMs. 

Profile searches 
Three types of searches can be performed with profiles: 

1. Sequence-profile searches 

2. Profile-sequence searches 

3. Profile-profile searches 

Sequence-profile searches 

Sequence-profile searches are typically performed when we use a query 
sequence to search a domain/family database (such as the databases included 
in the InterPro). Due to the different methodologies to build these databases, 
the underlying methods to perform the searches are also diverse. 

The sequence-profile search in InterPro is performed by the InterProScan 
Sequence Search. InterProScan is a tool that combines the different protein 
signature recognition methods native to the InterPro member databases into 
one resource. 

Profile-sequence searches 
These searches are performed when we use a query profile to search a 
sequence database. Typically, the profile will represent a domain or family, 
and we are interested in finding new sequences that contain the domain or are 
potential members of that family. 

The profile is usually created from a multiple sequence alignment (e.g. 
HMMER) or automatically built by the search program (e.g. PSI-BLAST). 

HMMER 

HMMER is used for searching sequence databases for homologs of protein 
sequences, and for making protein sequence alignments. It implements 
methods using Hidden Markov Models. 

Compared to BLAST, FASTA, and other sequence alignment and database 
search tools based on older scoring methodology, HMMER aims to be 
significantly more accurate and more able to detect remote homologs because 
of the strength of its underlying mathematical models. In the past, this 
strength came at significant computational expense, but in the new HMMER3 
project, HMMER is now essentially as fast as BLAST. 

PSI-BLAST  

(Position-Specific Iterated BLAST) is a tool that produces a position-specific 
scoring matrix constructed from a multiple alignment of the top-scoring 
BLAST responses to a given query sequence. This scoring matrix produces a 
profile designed to identify the key positions of conserved amino acids within a 
motif. When a profile is used to search a database, it can often detect subtle 
relationships between proteins that are distant structural or functional 
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homologues. These relationships are often not detected by a BLAST search 
with a sample sequence query.  

In the first round, PSI-BLAST is just like a normal BLAST; it finds sequence 
homologues. In the second round or "iteration" of PSI-BLAST, it figures out 
which residues tend to be conserved by creating a custom profile for each 
position of the sequence from a multiple alignment. Then another BLAST is 
performed, using the profile to produce a position-specific scoring matrix 
based on which positions evolution has conserved vs. which positions 
evolution has allowed to vary. The sequences found after the first round are 
added to the profile, allowing PSI-BLAST to detect more distant homologues in 
each iteration.  

Profile-profile methods 

Profile-profile searches are performed when we use a query profile to search 
against a profile database. 

To improve the detection of related proteins, it is often useful to include 
evolutionary information for both the query and target proteins. One method 
to include this information is by the use of profile-profile alignments, where a 
profile from the query protein is compared with the profiles from the target 
proteins. Profile-profile alignments can be implemented in several 
fundamentally different ways. 
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