Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An update on autoantibodies in the idiopathic inflammatory myopathies

Abstract

Myositis-specific autoantibodies (MSAs) have become pivotal biomarkers for idiopathic inflammatory myopathies and have revolutionized understanding of the heterogeneous disease spectrum that affects both adults and children. The discovery and characterization of MSAs have substantially enhanced patient stratification based on clinical phenotype, thereby facilitating more precise diagnosis and ultimately improving management strategies. Advances in immunoassay technologies in the past 20 years have further propelled the field forward, enabling the detection of a growing repertoire of autoantibodies with high specificity and sensitivity; however, evolving research over the past decade has revealed that even within antibody-defined subsets, considerable clinical diversity exists, suggesting a broader spectrum of disease manifestations than previously acknowledged. Challenges persist, particularly among patients who are seronegative, where the failure to identify certain rare MSAs stems from the use of diverse detection methodologies and inadequate consensus-guided standardization and validation protocols. Bridging these diagnostic gaps is crucial for optimizing patient care and refining prognostic stratification in idiopathic inflammatory myopathies.

Key points

  • Autoantibodies, found in over half of adult and paediatric patients with idiopathic inflammatory myopathies (IIMs), correlate with specific clinical phenotypes, aiding in the classification, diagnosis and prognostic assessment of these diseases.

  • The emergence of new myositis autoantibodies, along with a deeper understanding of serological categories in the past 10 years, enriches the diagnostic and prognostic repertoire for IIMs.

  • A more concerted global exploration of ethnic, environmental and genetic diversities is crucial to improve the characterization of subsets within the serological categories already known in IIMs.

  • Numerous new immunoassays for detecting myositis-specific autoantibodies, including line blot techniques, have variable performance and lack standardized protocols, requiring further validation for reliable myositis autoantibody detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Autoantibodies associated with different IIM manifestations.

Similar content being viewed by others

References

  1. Bohan, A. & Peter, J. B. Polymyositis and dermatomyositis (first of two parts). N. Engl. J. Med. 292, 344–347 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Bohan, A. & Peter, J. B. Polymyositis and dermatomyositis (second of two parts). N. Engl. J. Med. 292, 403–407 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. Dalakas, M. C. Polymyositis, dermatomyositis, and inclusion-body myositis. N. Engl. J. Med. 325, 1487–1498 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Hoogendijk, J. E. et al. 119th ENMC international workshop: trial design in adult idiopathic inflammatory myopathies, with the exception of inclusion body myositis, 10–12 October 2003, Naarden, The Netherlands. Neuromuscul. Disord. 14, 337–345 (2004).

    Article  PubMed  Google Scholar 

  5. Love, L. A. et al. A new approach to the classification of idiopathic inflammatory myopathy: myositis-specific autoantibodies define useful homogeneous patient groups. Medicine 70, 360–374 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Betteridge, Z. et al. Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a combined European cohort of idiopathic inflammatory myopathy patients. J. Autoimmun. 101, 48–55 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tansley, S. L. et al. Autoantibodies in juvenile-onset myositis: their diagnostic value and associated clinical phenotype in a large UK cohort. J. Autoimmun. 84, 55–64 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McHugh, N. J. & Tansley, S. L. Autoantibodies in myositis. Nat. Rev. Rheumatol. 14, 290–302 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Betteridge, Z. & McHugh, N. Myositis-specific autoantibodies: an important tool to support diagnosis of myositis. J. Intern. Med. 280, 8–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Papadopoulou, C., Chew, C., Wilkinson, M. G. L., McCann, L. & Wedderburn, L. R. Juvenile idiopathic inflammatory myositis: an update on pathophysiology and clinical care. Nat. Rev. Rheumatol. 19, 343–362 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Muro, Y., Ishikawa, A., Sugiura, K. & Akiyama, M. Clinical features of anti-TIF1-α antibody-positive dermatomyositis patients are closely associated with coexistent dermatomyositis-specific autoantibodies and anti-TIF1-γ or anti-mi-2 autoantibodies. Rheumatology 51, 1508–1513 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, H. L. et al. Coexistence of multiple myositis-specific antibodies in patients with idiopathic inflammatory myopathies. J. Clin. Med. 11, 6972 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta, L., Naveen, R., Gaur, P., Agarwal, V. & Aggarwal, R. Myositis-specific and myositis-associated autoantibodies in a large Indian cohort of inflammatory myositis. Semin. Arthritis Rheum. 51, 113–120 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Lundberg, I. E., Miller, F. W., Tjärnlund, A. & Bottai, M. Diagnosis and classification of idiopathic inflammatory myopathies. J. Intern. Med. 280, 39–51 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reichlin, M. & Mattioli, M. Description of a serological reaction characteristic of polymyositis. Clin. Immunol. Immunopathol. 5, 12–20 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. Sato, S. et al. RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: association with rapidly progressive interstitial lung disease. Arthritis Rheum. 60, 2193–2200 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Sato, S. et al. Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis Rheum. 52, 1571–1576 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Fujimoto, M. et al. Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis Rheum. 64, 513–522 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Targoff, I. N. et al. A novel autoantibody to a 155-kd protein is associated with dermatomyositis. Arthritis Rheum. 54, 3682–3689 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Gunawardena, H. et al. Autoantibodies to a 140-kd protein in juvenile dermatomyositis are associated with calcinosis. Arthritis Rheum. 60, 1807–1814 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Betteridge, Z., Gunawardena, H., North, J., Slinn, J. & McHugh, N. Identification of a novel autoantibody directed against small ubiquitin-like modifier activating enzyme in dermatomyositis. Arthritis Rheum. 56, 3132–3137 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Van Gompel, E. et al. Autoantibodies against the melanoma differentiation-associated protein 5 in patients with dermatomyositis target the helicase domains. Rheumatology 63, 1466–1473 (2024).

    Article  PubMed  Google Scholar 

  23. Pinal-Fernandez, I. et al. Pathological autoantibody internalisation in myositis. Ann. Rheum. Dis. 83, 1549–1560 (2024).

    PubMed  Google Scholar 

  24. Nombel, A., Fabien, N. & Coutant, F. Dermatomyositis with anti-MDA5 antibodies: bioclinical features, pathogenesis and emerging therapies. Front. Immunol. 12, 773352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mamyrova, G. et al. Anti-MDA5 autoantibodies associated with juvenile dermatomyositis constitute a distinct phenotype in North America. Rheumatology 60, 1839–1849 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Ueki, M. et al. Myositis-specific autoantibodies in Japanese patients with juvenile idiopathic inflammatory myopathies. Mod. Rheumatol. 29, 351–356 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Narang, N. S., Casciola-Rosen, L., Li, S., Chung, L. & Fiorentino, D. F. Cutaneous ulceration in dermatomyositis: association with anti-melanoma differentiation-associated gene 5 antibodies and interstitial lung disease. Arthritis Care Res. 67, 667–672 (2015).

    Article  CAS  Google Scholar 

  28. Lu, X., Peng, Q. & Wang, G. Anti-MDA5 antibody-positive dermatomyositis: pathogenesis and clinical progress. Nat. Rev. Rheumatol. 20, 48–62 (2024).

    Article  CAS  PubMed  Google Scholar 

  29. Yamasaki, Y. et al. Clinical impact of myositis-specific autoantibodies on long-term prognosis of juvenile idiopathic inflammatory myopathies: multicentre study. Rheumatology 60, 4821–4831 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, L. et al. Predictors of mortality for dermatomyositis patients positive with anti-melanoma differentiation-related gene 5 and optimal treatment. Clin. Exp. Rheumatol. 42, 246–252 (2024).

    PubMed  Google Scholar 

  31. Wang, H. et al. Mortality risk in patients with anti-MDA5 dermatomyositis is related to rapidly progressive interstitial lung disease and anti-Ro52 antibody. Arthritis Res. Ther. 25, 127 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhandari, S. et al. A review of MDA-5 dermatomyositis and associated interstitial lung disease. Rheumatology 4, 33–48 (2024).

    Google Scholar 

  33. Chen, X. et al. Clinical, radiological and pathological features of anti-MDA5 antibody-associated interstitial lung disease. RMD Open 9, e003150 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shirai, T., Machiyama, T., Sato, H., Ishii, T. & Fujii, H. Intensive induction therapy combining tofacitinib, rituximab and plasma exchange in severe anti-melanoma differentiation-associatedprotein-5 antibody-positive dermatomyositis. Clin. Exp. Rheumatol. 41, 291–300 (2023).

    PubMed  Google Scholar 

  35. Tsuji, H. et al. Multicenter prospective study of the efficacy and safety of combined immunosuppressive therapy with high-dose glucocorticoid, tacrolimus, and cyclophosphamide in interstitial lung diseases accompanied by anti-melanoma differentiation-associated gene 5-positive dermatomyositis. Arthritis Rheumatol. 72, 488–498 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Nakashima, R. et al. The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology 49, 433–440 (2009).

    Article  PubMed  Google Scholar 

  37. Koga, T. et al. The diagnostic utility of anti-melanoma differentiation-associated gene 5 antibody testing for predicting the prognosis of Japanese patients with DM. Rheumatology 51, 1278–1284 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Ishikawa, Y., Kasuya, T., Fujiwara, M. & Kita, Y. Tofacitinib for recurrence of antimelanoma differentiation-associated gene 5 antibody-positive clinically amyopathic dermatomyositis after remission: a case report. Medicine 99, e21943 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Endo, Y. et al. Recurrence of anti-MDA5 antibody-positive clinically amyopathic dermatomyositis after long-term remission. Medicine 97, e11024 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lv, C. et al. Coexistence of anti-Ro52 antibodies in anti-MDA5 antibody-positive dermatomyositis is highly associated with rapidly progressive interstitial lung disease and mortality risk. J. Rheumatol. 50, 219–226 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, A. et al. Prognostic values of anti-Ro52 antibodies in anti-MDA5-positive clinically amyopathic dermatomyositis associated with interstitial lung disease. Rheumatology 60, 3343–3351 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Allenbach, Y. et al. Different phenotypes in dermatomyositis associated with anti-MDA5 antibody: study of 121 cases. Neurology 95, e70–e78 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. David, P. et al. MDA5-autoimmunity and interstitial pneumonitis contemporaneous with the COVID-19 pandemic (MIP-C). EBioMedicine 104, 105136 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamada, T. et al. RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells. Nat. Immunol. 22, 820–828 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Zou, J., Guo, Q., Chi, J., Wu, H. & Bao, C. HRCT score and serum ferritin level are factors associated to the 1-year mortality of acute interstitial lung disease in clinically amyopathic dermatomyositis patients. Clin. Rheumatol. 34, 707–714 (2015).

    Article  PubMed  Google Scholar 

  46. Gono, T. et al. Anti-MDA5 antibody, ferritin and IL-18 are useful for the evaluation of response to treatment in interstitial lung disease with anti-MDA5 antibody-positive dermatomyositis. Rheumatology 51, 1563–1570 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Nishioka, A. et al. Serum neopterin as well as ferritin, soluble interleukin-2 receptor, KL-6 and anti-MDA5 antibody titer provide markers of the response to therapy in patients with interstitial lung disease complicating anti-MDA5 antibody-positive dermatomyositis. Mod. Rheumatol. 29, 814–820 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, T. et al. Neutrophil-to-lymphocyte ratio is a predictive marker for anti-MDA5 positive dermatomyositis. BMC Pulm. Med. 22, 316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ren, F. P. et al. Characteristics and prognostic implications of peripheral blood lymphocyte subsets in patients with anti-MDA5 antibody positive dermatomyositis-interstitial lung disease. BMC Pulm. Med. 23, 411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, P. et al. Plasma proteomic profiling reveals KRT19 could be a potential biomarker in patients with anti-MDA5+ dermatomyositis. Clin. Rheumatol. 42, 2145–2154 (2023).

    Article  PubMed  Google Scholar 

  51. Liu, Y. et al. IFN-beta and EIF2AK2 are potential biomarkers for interstitial lung disease in anti-MDA5 positive dermatomyositis. Rheumatology 62, 3724–3731 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, Y. et al. Characteristics and predictors of malignancy in dermatomyositis: analysis of 239 patients from northern China. Oncol. Lett. 16, 5960–5968 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaji, K. et al. Identification of a novel autoantibody reactive with 155 and 140 kDa nuclear proteins in patients with dermatomyositis: an association with malignancy. Rheumatology 46, 25–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Gunawardena, H. et al. Clinical associations of autoantibodies to a p155/140 kDa doublet protein in juvenile dermatomyositis. Rheumatology 47, 324–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Satoh, M. et al. Autoantibodies to transcription intermediary factor (TIF)1β associated with dermatomyositis. Arthritis Res. Ther. 14, R79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mugii, N. et al. Oropharyngeal dysphagia in dermatomyositis: associations with clinical and laboratory features including autoantibodies. PLoS ONE 11, e0154746 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rider, L. G. & Nistala, K. The juvenile idiopathic inflammatory myopathies: pathogenesis, clinical and autoantibody phenotypes, and outcomes. J. Intern. Med. 280, 24–38 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Halilu, F. & Christopher-Stine, L. Myositis-specific antibodies: overview and clinical utilization. Rheumatol. Immunol. Res. 3, 1–10 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chung, M. P. et al. Calcinosis biomarkers in adult and juvenile dermatomyositis. Autoimmun. Rev. 19, 102533 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Valenzuela, A., Chung, L., Casciola-Rosen, L. & Fiorentino, D. Identification of clinical features and autoantibodies associated with calcinosis in dermatomyositis. JAMA Dermatol. 150, 724–729 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fiorentino, D. F. et al. Distinctive cutaneous and systemic features associated with antitranscriptional intermediary factor-1γ antibodies in adults with dermatomyositis. J. Am. Acad. Dermatol. 72, 449–455 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chinoy, H., Fertig, N., Oddis, C. V., Ollier, W. E. R. & Cooper, R. G. The diagnostic utility of myositis autoantibody testing for predicting the risk of cancer-associated myositis. Ann. Rheum. Dis. 66, 1345–1349 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Trallero-Araguás, E. et al. Usefulness of anti-p155 autoantibody for diagnosing cancer-associated dermatomyositis: a systematic review and meta-analysis. Arthritis Rheum. 64, 523–532 (2012).

    Article  PubMed  Google Scholar 

  64. Cordel, N. et al. Anti-transcription intermediary factor 1-gamma IgG2 isotype is associated with cancer in adult dermatomyositis: an ENMC multinational study. Rheumatology 62, 1711–1715 (2023).

    Article  PubMed  Google Scholar 

  65. Hoshino, K. et al. Anti-MDA5 and anti-TIF1-γ antibodies have clinical significance for patients with dermatomyositis. Rheumatology 49, 1726–1733 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. De Vooght, J. et al. Anti-TIF1-γautoantibodies: warning lights of a tumour autoantigen. Rheumatology 59, 469–477 (2020).

    Article  PubMed  Google Scholar 

  67. Kotobuki, Y., Tonomura, K. & Fujimoto, M. Transcriptional intermediary factor 1 (TIF1) and anti-TIF1γ antibody-positive dermatomyositis. Immunol. Med. 44, 23–29 (2020).

    Article  PubMed  Google Scholar 

  68. Pinal-Fernandez, I. et al. Tumour TIF1 mutations and loss of heterozygosity related to cancer-associated myositis. Rheumatology 57, 388–396 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Nguyen, H. D. et al. TIF1-gamma IgG2 isotype is not associated with malignancy in juvenile dermatomyositis patients. Rheumatology 63, e281–e284 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Adler, B. L. & Christopher-Stine, L. Triggers of inflammatory myopathy: insights into pathogenesis. Discov. Med. 25, 75–83 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Rothwell, S. et al. Focused HLA analysis in Caucasians with myositis identifies significant associations with autoantibody subgroups. Ann. Rheum. Dis. 78, 996–1002 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Oldroyd, A. G. S. et al. International guideline for idiopathic inflammatory myopathy-associated cancer screening: an international myositis assessment and clinical studies group (IMACS) initiative. Nat. Rev. Rheumatol. 19, 805–817 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Targoff, I. N., Trieu, E. P., Levy-Nato, M., Fertig, N. & Oddis, C. V. Sera with autoantibodies to the MJ antigen react with NXP2. Arthritis Rheum. 56, S787 (2007).

    Google Scholar 

  74. Mimura, Y., Takahashi, K., Kawata, K., Akazawa, T. & Inoue, N. Two-step colocalization of MORC3 with PML nuclear bodies. J. Cell Sci. 123, 2014–2024 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Oddis, C. V. Clinical and serological characterization of the anti-MJ antibody in childhood myositis. Arthritis Rheum. 40, S139 (1997).

    Google Scholar 

  76. Ichimura, Y. et al. Anti-nuclear matrix protein 2 antibody-positive inflammatory myopathies represent extensive myositis without dermatomyositis-specific rash. Rheumatology 61, 1222–1227 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Tansley, S. L. et al. Calcinosis in juvenile dermatomyositis is influenced by both anti-NXP2 autoantibody status and age at disease onset. Rheumatology 53, 2204–2208 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Albayda, J. et al. Antinuclear matrix protein 2 autoantibodies and edema, muscle disease, and malignancy risk in dermatomyositis patients. Arthritis Care Res. 69, 1771–1776 (2017).

    Article  CAS  Google Scholar 

  79. Lundberg, I. E. et al. Idiopathic inflammatory myopathies. Nat. Rev. Dis. Prim. 7, 86 (2021).

    Article  PubMed  Google Scholar 

  80. Xu, Y. et al. Gastrointestinal perforation in anti-NXP2 antibody-associated juvenile dermatomyositis: case reports and a review of the literature. Pediatr. Rheumatol. Online J. 19, 2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fu, Y. et al. Severe gastrointestinal involvements in patients with adult dermatomyositis with anti-NXP2 antibody. RMD Open 10, e003901 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Uchio, N. et al. Anti-nuclear matrix protein 2 antibody-positive dermatomyositis with gastrointestinal ulcers: a case report. Int. J. Rheum. Dis. 26, 2572–2575 (2023).

    Article  PubMed  Google Scholar 

  83. Wang, X. et al. Clinical characteristics and poor predictors of anti-NXP2 antibody-associated Chinese JDM children. Pediatr. Rheumatol. Online J. 19, 6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ichimura, Y. et al. Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies: possible association with malignancy. Ann. Rheum. Dis. 71, 710–713 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Landon-Cardinal, O. et al. Anti-Mi2 dermatomyositis revisited: pure DM phenotype with muscle fiber necrosis and high risk of malignancy. Neuromuscul. Disord. 27, S153 (2017).

    Article  Google Scholar 

  86. Wolstencroft, P. W. & Fiorentino, D. F. Dermatomyositis clinical and pathological phenotypes associated with myositis-specific autoantibodies. Curr. Rheumatol. Rep. 20, 28 (2018).

    Article  PubMed  Google Scholar 

  87. Yasin, S. A. et al. Histological heterogeneity in a large clinical cohort of juvenile idiopathic inflammatory myopathy: analysis by myositis autoantibody and pathological features. Neuropathol. Appl. Neurobiol. 45, 495–512 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pinal-Fernandez, I. et al. More prominent muscle involvement in patients with dermatomyositis with anti-Mi2 autoantibodies. Neurology 93, e1768–e1777 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fornaro, M. et al. Severe muscle damage with myofiber necrosis and macrophage infiltrates characterize anti-Mi2 positive dermatomyositis. Rheumatology 60, 2916–2926 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Liang, L. et al. Anti-Mi-2 antibodies characterize a distinct clinical subset of dermatomyositis with favourable prognosis. Eur. J. Dermatol. 30, 151–158 (2020).

    Article  CAS  Google Scholar 

  91. Fujimoto, M. et al. Autoantibodies to small ubiquitin-like modifier activating enzymes in Japanese patients with dermatomyositis: comparison with a UK Caucasian cohort. Ann. Rheum. Dis. 72, 151–153 (2013).

    Article  PubMed  Google Scholar 

  92. Gono, T. et al. Two cases with autoantibodies to small ubiquitin-like modifier activating enzyme: a potential unique subset of dermatomyositis-associated interstitial lung disease. Int. J. Rheum. Dis. 22, 1582–1586 (2019).

    Article  PubMed  Google Scholar 

  93. Demortier, J. et al. Anti-SAE autoantibody in dermatomyositis: original comparative study and review of the literature. Rheumatology 62, 3932–3939 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Albayda, J. et al. A North American cohort of anti-SAE dermatomyositis: clinical phenotype, testing, and review of cases. ACR Open Rheumatol. 3, 287–294 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ge, Y., Lu, X., Shu, X., Peng, Q. & Wang, G. Clinical characteristics of anti-SAE antibodies in Chinese patients with dermatomyositis in comparison with different patient cohorts. Sci. Rep. 7, 188 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Betteridge, Z. E. et al. Clinical and human leucocyte antigen class II haplotype associations of autoantibodies to small ubiquitin-like modifier enzyme, a dermatomyositis-specific autoantigen target, in UK Caucasian adult-onset myositis. Ann. Rheum. Dis. 68, 1621–1625 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Zuo, Y. et al. Clinical significance of radiological patterns of HRCT and their association with macrophage activation in dermatomyositis. Rheumatology 59, 2829–2837 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Yang, H. et al. Identification of multiple cancer-associated myositis-specific autoantibodies in idiopathic inflammatory myopathies: a large longitudinal cohort study. Arthritis Res. Ther. 19, 259 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pinal-Fernandez, I., Casal-Dominguez, M. & Mammen, A. L. Immune-mediated necrotizing myopathy. Curr. Rheumatol. Rep. 20, 21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang, L. et al. Myopathy with anti-signal recognition particle antibodies: clinical and histopathological features in Chinese patients. Neuromuscul. Disord. 24, 335–341 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Svensson, J., Arkema, E. V., Lundberg, I. E. & Holmqvist, M. Incidence and prevalence of idiopathic inflammatory myopathies in Sweden: a nationwide population-based study. Rheumatology 56, 802–810 (2017).

    Article  PubMed  Google Scholar 

  102. Dobloug, C. et al. Prevalence and clinical characteristics of adult polymyositis and dermatomyositis; data from a large and unselected Norwegian cohort. Ann. Rheum. Dis. 74, 1551–1556 (2015).

    Article  PubMed  Google Scholar 

  103. Kusumoto, T. et al. Development of necrotizing myopathy following interstitial lung disease with anti-signal recognition particle antibody. Intern. Med. 57, 2045–2049 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ge, Y. et al. Interstitial lung disease is not rare in immune-mediated necrotizing myopathy with anti-signal recognition particle antibodies. BMC Pulm. Med. 22, 14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bandeira, M. et al. Predictors of cardiac involvement in idiopathic inflammatory myopathies. Front. Immunol. 14, 1146817 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ma, X. & Bu, B. T. Anti-SRP immune-mediated necrotizing myopathy: a critical review of current concepts. Front. Immunol. 13, 1019972 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Allenbach, Y. et al. 224th ENMC International workshop: clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14–16 October 2016. Neuromuscul. Disord. 28, 87–99 (2018).

    Article  PubMed  Google Scholar 

  108. Rouster-Stevens, K. A. & Pachman, L. M. Autoantibody to signal recognition particle in African American girls with juvenile polymyositis. J. Rheumatol. 35, 927–929 (2008).

    CAS  PubMed  Google Scholar 

  109. Binns, E. L. et al. Effective induction therapy for anti-SRP associated myositis in childhood: a small case series and review of the literature. Pediatr. Rheumatol. Online J. 15, 77 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pinal-Fernandez, I. et al. Longitudinal course of disease in a large cohort of myositis patients with autoantibodies recognizing the signal recognition particle. Arthritis Care Res. 69, 263–270 (2017).

    Article  CAS  Google Scholar 

  111. Kurashige, T. Anti-HMGCR myopathy: clinical and histopathological features, and prognosis. Curr. Opin. Rheumatol. 33, 554–562 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Selva-O’Callaghan, A. et al. Statin-induced myalgia and myositis: an update on pathogenesis and clinical recommendations. Expert. Rev. Clin. Immunol. 14, 215–224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kishi, T. et al. Association of anti-3-hydroxy-3-methylglutaryl-coenzyme a reductase autoantibodies with DRB1*07:01 and severe myositis in juvenile myositis patients. Arthritis Care Res. 69, 1088–1094 (2017).

    Article  CAS  Google Scholar 

  114. Khoo, T. & Chinoy, H. Anti-HMGCR immune-mediated necrotising myopathy: addressing the remaining issues. Autoimmun. Rev. 22, 103468 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Tiniakou, E. et al. More severe disease and slower recovery in younger patients with anti-3-hydroxy-3-methylglutarylcoenzyme A reductase-associated autoimmune myopathy. Rheumatology 56, 787–794 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Allenbach, Y. et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody. Brain 139, 2131–2135 (2016).

    Article  PubMed  Google Scholar 

  117. Connors, G. R., Christopher-Stine, L., Oddis, C. V. & Danoff, S. K. Interstitial lung disease associated with the idiopathic inflammatory myopathies: what progress has been made in the past 35 years? Chest 138, 1464–1474 (2010).

    Article  PubMed  Google Scholar 

  118. Muro, Y. et al. Two novel anti-aminoacyl tRNA synthetase antibodies: autoantibodies against cysteinyl-tRNA synthetase and valyl-tRNA synthetase. Autoimmun. Rev. 21, 103204 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Preger, C. et al. Autoantigenic properties of the aminoacyl tRNA synthetase family in idiopathic inflammatory myopathies. J. Autoimmun. 134, 102951 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Vulsteke, J. B. et al. Mass spectrometry-based identification of new anti-Ly and known antisynthetase autoantibodies. Ann. Rheum. Dis. 82, 546–555 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Patel, P., Marinock, J. M., Ajmeri, A. & Brent, L. H. A review of antisynthetase syndrome-associated interstitial lung disease. Int. J. Mol. Sci. 21, 4453 (2024).

    Article  Google Scholar 

  122. Satoh, M., Tanaka, S., Ceribelli, A., Calise, S. J. & Chan, E. K. L. A comprehensive overview on myositis-specific antibodies: new and old biomarkers in idiopathic inflammatory myopathy. Clin. Rev. Allergy Immunol. 52, 1–19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Galindo-Feria, A. S., Wang, G. & Lundberg, I. E. Autoantibodies: pathogenic or epiphenomenon. Best. Pract. Res. Clin. Rheumatol. 36, 101767 (2022).

    Article  PubMed  Google Scholar 

  124. Marie, I. et al. Comparison of long-term outcome between anti-Jo1- and anti-PL7/PL12 positive patients with antisynthetase syndrome. Autoimmun. Rev. 11, 739–745 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Marie, I. et al. Clinical manifestations and outcome of anti-PL7 positive patients with antisynthetase syndrome. Eur. J. Intern. Med. 24, 474–479 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Vulsteke, J. B. et al. Anti-OJ autoantibodies: rare or underdetected? Autoimmun. Rev. 18, 658–664 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Hamaguchi, Y. et al. Common and distinct clinical features in adult patients with anti-aminoacyl-tRNA synthetase antibodies: heterogeneity within the syndrome. PLoS ONE 8, e60442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kapoor, A., Vaidyan, P., Jalil, B. & Upaluri, C. Novel case of anti-synthetase syndrome. Eur. J. Rheumatol. 5, 275–277 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Noguchi, E. et al. Skeletal muscle involvement in antisynthetase syndrome. JAMA Neurol. 74, 992–999 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wu, S. et al. Novel endotypes of antisynthetase syndrome identified independent of anti-aminoacyl transfer RNA synthetase antibody specificity that improve prognostic stratification. Ann. Rheum. Dis. 83, 775–786 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Aguila, L. A. et al. Clinical and laboratory features of overlap syndromes of idiopathic inflammatory myopathies associated with systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. Clin. Rheumatol. 33, 1093–1098 (2014).

    Article  PubMed  Google Scholar 

  132. Louis Gaspar, B. in Current Trends and Future Prospects Immune-Mediated Myopathies and Neuropathies 101–102 (Springer, 2023).

  133. Srikantharajah, D., Lloyd, M. E. & Kiely, P. D. W. Rituximab and intravenous immunoglobulin treatment in PM/Scl antibody-associated disease: case-based review. Rheumatol. Int. 42, 359–364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jacquier, M. et al. Scleroderma renal crisis in a systemic sclerosis with anti-PM/Scl antibodies. Kidney Int. Rep. 4, 1499–1502 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hanke, K. et al. Antibodies against PM/Scl-75 and PM/Scl-100 are independent markers for different subsets of systemic sclerosis patients. Arthritis Res. Ther. 11, R22 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Babu, A. K., Mizaj, Z., Thomas, J. & Chacko, M. Clinical significance of myositis-specific and myositis-associated antibody profiles in dermatomyositis. Indian. Dermatol. Online J. 14, 55–60 (2023).

    Article  PubMed  Google Scholar 

  137. Júnior, J. G., Mugii, N., Inaoka, P. T., Sampaio-Barros, P. D. & Shinjo, S. K. Inflammatory myopathies overlapping with systemic sclerosis: a systematic review. Clin. Rheumatol. 41, 1951–1963 (2022).

    Article  PubMed  Google Scholar 

  138. Fotis, L., Baszis, K. W., White, A. J. & French, A. R. Four cases of anti-PM/Scl antibody-positive juvenile overlap syndrome with features of myositis and systemic sclerosis. J. Rheumatol. 43, 1768–1769 (2016).

    Article  PubMed  Google Scholar 

  139. Rutkowska-Sak, L., Gietka, P., Gazda, A. & Kolodziejczyk, B. Juvenile systemic sclerosis — observations of one clinical centre. Reumatologia 59, 367–372 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sharp, G. C., Irvin, W. S., Tan, E. M., Gould, R. G. & Holman, H. R. Mixed connective tissue disease—an apparently distinct rheumatic disease syndrome associated with a specific antibody to an extractable nuclear antigen (ENA). Am. J. Med. 52, 148–159 (1972).

    Article  CAS  PubMed  Google Scholar 

  141. Ciang, N. C. O., Pereira, N. & Isenberg, D. A. Mixed connective tissue disease—enigma variations? Rheumatology 56, 326–333 (2017).

    CAS  PubMed  Google Scholar 

  142. Ge, Y. et al. Clinical characteristics of myositis patients with isolated anti-U1 ribonucleoprotein antibody resemble immune-mediated necrotizing myopathy. Ther. Adv. Musculoskelet. Dis. 15, 1759720–231181336 (2023).

    Article  Google Scholar 

  143. Casal-Dominguez, M. et al. Muscular and extramuscular features of myositis patients with anti-U1-RNP autoantibodies. Neurology 92, e1416–e1426 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lokesh, S., Tony, K., Raghupathy, Suresh, V. & Malepati, B. A rare case of mixed connective tissue disease (MCTD) with intricate features of lupus, polymyositis and rheumatoid arthritis presenting with severe myositis. J. Clin. Diagn. Res. 9, OD05–OD07 (2015).

    Google Scholar 

  145. Guha, S. et al. Exploring clinical features and therapeutic outcomes in Indian children with mixed connective tissue disease: a multicenter study. Int. J. Rheum. Dis. 27, e15243 (2024).

    Article  CAS  PubMed  Google Scholar 

  146. Wesner, N. et al. Anti-RNP antibodies delineate a subgroup of myositis: a systematic retrospective study on 46 patients. Autoimmun. Rev. 19, 102465 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Leclair, V. et al. Distinct HLA associations with autoantibody-defined subgroups in idiopathic inflammatory myopathies. EBioMedicine 96, 104804 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ghirardello, A. et al. Detection of myositis autoantibodies by multi-analytic immunoassays in a large multicenter cohort of patients with definite idiopathic inflammatory myopathies. Diagnostics 13, 3080 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pepper, E., Vilar, L. & Ward, I. M. Clinical characteristics and prognostic value of Ro52/SSA antibodies in idiopathic inflammatory myopathies. J. Clin. Rheumol. 29, 347–353 (2023).

    Article  Google Scholar 

  150. Pina Cruellas, M. G. et al. Myositis-specific and myositis-associated autoantibody profiles and their clinical associations in a large series of patients with polymyositis and dermatomyositis. Clinics 68, 909–914 (2013).

    Article  Google Scholar 

  151. Shi, J. et al. Clinical profiles and prognosis of patients with distinct antisynthetase autoantibodies. J. Rheumatol. 44, 1051–1057 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Sreevilasan, S. K., Devarasetti, P., Narahari, N. K., Desai, A. & Rajasekhar, L. Clinical profile and treatment outcomes in antisynthetase syndrome: a tertiary centre experience. Rheumatol. Adv. Pract. 5, ii10–ii18 (2021). Suppl 2.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Limaye, V. S., Cassidy, J., Scott, G., Roberts-Thomson, P. J. & Gillis, D. Anti-Ro52 antibodies, antisynthetase antibodies, and antisynthetase syndrome. Clin. Rheumatol. 27, 521–523 (2008).

    Article  PubMed  Google Scholar 

  154. Yamasaki, Y. et al. Clinical subsets associated with different anti-aminoacyl transfer RNA synthetase antibodies and their association with coexisting anti-Ro52. Mod. Rheumatol. 26, 403–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Bauhammer, J. et al. Rituximab in the treatment of Jo1 antibody-associated antisynthetase syndrome: anti-Ro52 positivity as a marker for severity and treatment response. J. Rheumatol. 43, 1566–1574 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. La Corte, R., Lo Mo Naco, A., Locaputo, A., Dolzani, F. & Trotta, F. In patients with antisynthetase syndrome the occurrence of anti-Ro/SSA antibodies causes a more severe interstitial lung disease. Autoimmunity 39, 249–253 (2006).

    Article  PubMed  Google Scholar 

  157. Shao, C. et al. Myositis specific antibodies are associated with isolated anti-Ro-52 associated interstitial lung disease. Rheumatology 61, 1083–1091 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Decker, P. et al. An updated review of anti-Ro52 (TRIM21) antibodies impact in connective tissue diseases clinical management. Autoimmun. Rev. 21, 103013 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Xia, J. et al. Respiratory symptoms as initial manifestations of interstitial lung disease in clinically amyopathic juvenile dermatomyositis: a case report with literature review. BMC Pediatr. 21, 488 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Liu, Y., Zheng, Y., Hao, H. & Yuan, Y. Narrative review of autoantibodies in idiopathic inflammatory myopathies. Ann. Transl. Med. 11, 291 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Zenone, T., Streichenberger, N. & Puget, M. Camptocormia as a clinical manifestation of polymyositis/systemic sclerosis overlap myositis associated with anti-Ku. Rheumatol. Int. 33, 2411–2415 (2013).

    Article  PubMed  Google Scholar 

  162. Spielmann, L. et al. Anti-Ku syndrome with elevated CK and anti-Ku syndrome with anti-dsDNA are two distinct entities with different outcomes. Ann. Rheum. Dis. 78, 1101–1106 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Sousa, M. et al. Anti-Ku antibody syndrome: is it a distinct clinical entity? A cross-sectional study of 75 patients. Rheumatology 62, e213–e215 (2023).

    Article  PubMed  Google Scholar 

  164. Casal-Dominguez, M. et al. The phenotype of myositis patients with anti-Ku autoantibodies. Semin. Arthritis Rheum. 51, 728–734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Batu, E. D. et al. Further expanding the phenotype of anti-Ku antibody associated disease in children and adolescents. Neuromuscul. Disord. 40, 7–15 (2024).

    Article  PubMed  Google Scholar 

  166. Kanda, S. et al. Anti-Ku antibody-positive systemic sclerosis and idiopathic inflammatory myopathies overlap syndrome in children: a report of two cases and a review of the literature. Clin. Rheumatol. 42, 3411–3417 (2023).

    Article  PubMed  Google Scholar 

  167. Benjamin Larman, H. et al. Cytosolic 5′‐nucleotidase 1 A autoimmunity in sporadic inclusion body myositis. Ann. Neurol. 73, 408–418 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Pluk, H. et al. Autoantibodies to cytosolic 5′‐nucleotidase 1 A in inclusion body myositis. Ann. Neurol. 73, 397–407 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Lilleker, J. B. et al. 272nd ENMC international workshop: 10 years of progress — revision of the ENMC 2013 diagnostic criteria for inclusion body myositis and clinical trial readiness. 16–18 June 2023, Hoofddorp, The Netherlands.Neuromuscul. Disord. 37, 36–51 (2024).

    Article  PubMed  Google Scholar 

  170. Oldroyd, A., Lilleker, J. & Chinoy, H. Idiopathic inflammatory myopathies — a guide to subtypes, diagnostic approach and treatment. Clin. Med. 17, 322–328 (2017).

    Article  Google Scholar 

  171. Salam, S., Dimachkie, M. M., Hanna, M. G. & Machado, P. M. Diagnostic and prognostic value of anti-cN1A antibodies in inclusion body myositis. Clin. Exp. Rheumatol. 40, 384–393 (2022).

    Article  PubMed  Google Scholar 

  172. Yeker, R. M. et al. Anti-NT5C1A autoantibodies are associated with more severe disease in patients with juvenile myositis. Ann. Rheum. Dis. 77, 714–719 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Rietveld, A. et al. Anti–cytosolic 5′- nucleotidase 1 A autoantibodies are absent in juvenile dermatomyositis. Arthritis Rheumatol. 73, 1329–1333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mammen, A. L., Pinal-Fernandez, I. & Rider, L. G. Conflicting reports of anti-cytosolic 5′-nucleotidase 1 A autoantibodies in juvenile dermatomyositis: comment on the article by Rietveld et al. Arthritis Rheumatol. 74, 911–912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Herbert, M. K. et al. Disease specificity of autoantibodies to cytosolic 5′-nucleotidase 1 A in sporadic inclusion body myositis versus known autoimmune diseases. Ann. Rheum. Dis. 75, 696–701 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Kaji, K. et al. Autoantibodies to RuvBL1 and RuvBL2: a novel systemic sclerosis-related antibody associated with diffuse cutaneous and skeletal muscle involvement. Arthritis Care Res. 66, 575–584 (2014).

    Article  CAS  Google Scholar 

  177. Di Pietro, L. et al. Anti-RuvBL1/2 autoantibodies detection in a patient with overlap systemic sclerosis and polymyositis. Antibodies 12, 13 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Landon-Cardinal, O. et al. Recognising the spectrum of scleromyositis: HEp-2 ANA patterns allow identification of a novel clinical subset with anti-SMN autoantibodies. RMD Open 6, e001357 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. El Kamouni, H. et al. Anti-SMN autoantibodies in mixed connective tissue disease are associated with a severe systemic sclerosis phenotype. RMD Open 9, e003431 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Albrecht, I. et al. Development of autoantibodies against muscle-specific FHL1 in severe inflammatory myopathies. J. Clin. Invest. 125, 4612–4624 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Cowling, B. S. et al. Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy. J. Clin. Biol. 183, 1033–1048 (2008).

    Article  CAS  Google Scholar 

  182. Galindo-Feria, A. S. et al. Autoantibodies against four-and-a-half-LIM domain 1 (FHL1) in inflammatory myopathies: results from an Australian single-centre cohort. Rheumatology 61, 4145–4154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sherman, M. A. et al. Anti-FHL1 autoantibodies in juvenile myositis are associated with anti-Ro52 autoantibodies but not with severe disease features. Rheumatology 62, S1226–S1234 (2023).

    Article  Google Scholar 

  184. Fiorentino, D. F. et al. Immune responses to CCAR1 and other dermatomyositis autoantigens are associated with attenuated cancer emergence. J. Clin. Invest. 132, e150201 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fiorentino, D. et al. Association of Anti-CCAR1 autoantibodies with decreased cancer risk relative to the general population in patients with anti-transcriptional intermediary factor 1γ-positive dermatomyositis. Arthritis Rheumatol. 75, 1238–1245 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hosono, Y. et al. Coexisting autoantibodies against transcription factor Sp4 are associated with decreased cancer risk in patients with dermatomyositis with anti-TIF1γautoantibodies. Ann. Rheum. Dis. 82, 246–252 (2022).

    Article  PubMed  Google Scholar 

  187. Safe, S. MicroRNA-specificity protein (Sp) transcription factor interactions and significance in carcinogenesis. Curr. Pharmacol. Rep. 1, 73–78 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sherman, M. A. et al. Autoantibodies recognizing specificity protein 4 co-occur with anti–transcription intermediary factor 1 and are associated with distinct clinical features and immunogenetic risk factors in juvenile myositis. Arthritis Rheumatol. 75, 1668–1677 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Labrador-Horrillo, M. et al. Identification of a novel myositis-associated antibody directed against cortactin. Autoimmun. Rev. 13, 1008–1012 (2014).

    Article  CAS  PubMed  Google Scholar 

  190. Pinal-Fernandez, I. et al. Anti-cortactin autoantibodies are associated with key clinical features in adult myositis but are rarely present in juvenile myositis. Arthritis Rheumatol. 74, 358–364 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Buday, L., & Downward, J. Roles of cortactin in tumor pathogenesis. Biochim. Biophys. Acta 263-273, 2007 (1775).

    Google Scholar 

  192. Choi, M. Y., Satoh, M. & Fritzler, M. J. Update on autoantibodies and related biomarkers in autoimmune inflammatory myopathies. Curr. Opin. Rheumatol. 35, 383–394 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nagai, A. et al. Clinical features of anti-mitochondrial M2 antibody-positive myositis: case series of 17 patients. J. Neurol. Sci. 442, 120391 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Maeda, M. H., Tsuji, S. & Shimizu, J. Inflammatory myopathies associated with anti-mitochondrial antibodies. Brain 135, 1767–1777 (2012).

    Article  PubMed  Google Scholar 

  195. Uhl, G. S., Baldwin, J. L. & Arnett, F. C. Primary biliary cirrhosis in systemic sclerosis (scleroderma) and polymyositis. Johns. Hopkins Med. J. 135, 191–198 (1974).

    CAS  PubMed  Google Scholar 

  196. Fujii, S. et al. Inflammatory myopathy associated with anti-mitochondrial antibody presenting only with respiratory failure. Intern. Med. 60, 3801–3804 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Albayda, J. et al. Inflammatory myopathy associated with anti-mitochondrial antibodies: a distinct phenotype with cardiac involvement. Semin. Arthritis Rheum. 47, 552–556 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Minamiyama, S. et al. Thigh muscle MRI findings in myopathy associated with anti-mitochondrial antibody. Muscle Nerve 61, 81–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Ishizuka, K. & Ohira, Y. Antimitochondrial antibody-positive myositis. Am. J. Med. 137, e38–e39 (2024).

    Article  CAS  PubMed  Google Scholar 

  200. Betteridge, Z. et al. Identification of a novel autoantigen eukaryotic initiation factor 3 associated with polymyositis. Rheumatology 59, 1026–1030 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. La Rocca, G. et al. Targeting intracellular pathways in idiopathic inflammatory myopathies: a narrative review. Front. Med. 10, 1158768 (2023).

    Article  Google Scholar 

  202. Gupta, L. & Chinoy, H. Monitoring disease activity and damage in adult and juvenile idiopathic inflammatory myopathy. Curr. Opin. Rheumatol. 32, 553–561 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. do Vale Pascoal Rodrigues, P. R. et al. Triple-seronegative myasthenia gravis: clinical and epidemiological characteristics. Arq. Neuropsiquiatr. 82, 1–7 (2024).

    Google Scholar 

  204. Wigerblad, G. et al. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann. Rheum. Dis. 75, 730–738 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Catrina, A., Krishnamurthy, A. & Rethi, B. Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis. RMD Open 7, e001228 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Sakamoto, S. et al. Low positive titer of anti-melanoma differentiation-associated gene 5 antibody is not associated with a poor long-term outcome of interstitial lung disease in patients with dermatomyositis. Respir. Investig. 56, 464–472 (2018).

    Article  PubMed  Google Scholar 

  207. Cao, H. et al. Clinical manifestations of dermatomyositis and clinically amyopathic dermatomyositis patients with positive expression of anti-melanoma differentiation-associated gene 5 antibody. Arthritis Care Res. 64, 1602–1610 (2012).

    Article  Google Scholar 

  208. Matsushita, T. et al. Antimelanoma differentiation-associated protein 5 antibody level is a novel tool for monitoring disease activity in rapidly progressive interstitial lung disease with dermatomyositis. Br. J. Dermatol. 176, 395–402 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Muro, Y., Sugiura, K., Hoshino, K. & Akiyama, M. Disappearance of anti-MDA-5 autoantibodies in clinically amyopathic DM/interstitial lung disease during disease remission. Rheumatology 51, 800–804 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Tiniakou, E. et al. Anti-MDA5-positive dermatomyositis and remission in a single referral centre population. Clin. Exp. Rheumatol. 41, 309–315 (2023).

    PubMed  PubMed Central  Google Scholar 

  211. Hall, J. C. et al. Anti-melanoma differentiation-associated protein 5-associated dermatomyositis: expanding the clinical spectrum. Arthritis Care Res. 65, 1307–1315 (2013).

    Article  CAS  Google Scholar 

  212. Chen, B.-H., Zhu, X.-M., Xie, L. & Hu, H.-Q. Immune-mediated necrotizing myopathy: report of two cases. World J. Clin. Cases. 11, 3552–3559 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Benveniste, O. et al. Correlation of anti-signal recognition particle autoantibody levels with creatine kinase activity in patients with necrotizing myopathy. Arthritis Rheum. 63, 1961–1971 (2011).

    Article  CAS  PubMed  Google Scholar 

  214. Liu, R. et al. Pathogenic role and clinical significance of neutrophils and neutrophil extracellular traps in idiopathic inflammatory myopathies. Clin. Exp. Med. 24, 115 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Bolko, L. et al. The role of interferons type I, II and III in myositis: a review. Brain Pathol. 31, e12955 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Peng, Y., Zhang, S., Zhao, Y., Liu, Y. & Yan, B. Neutrophil extracellular traps may contribute to interstitial lung disease associated with anti-MDA5 autoantibody positive dermatomyositis. Clin. Rheumatol. 37, 107–115 (2018).

    Article  PubMed  Google Scholar 

  217. Seto, N. et al. Neutrophil dysregulation is pathogenic in idiopathic inflammatory myopathies. JCI Insight 5, e134189 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Zhao, L. et al. Machine learning algorithms identify clinical subtypes and cancer in anti-TIF1γ+ myositis: a longitudinal study of 87 patients. Front. Immunol. 13, 802499 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhang, S. et al. Enhanced formation and impaired degradation of neutrophil extracellular traps in dermatomyositis and polymyositis: a potential contributor to interstitial lung disease complications. Clin. Exp. Immunol. 177, 134–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Arouche-Delaperche, L. et al. Pathogenic role of anti-signal recognition protein and anti-3-Hydroxy-3-methylglutaryl-CoA reductase antibodies in necrotizing myopathies: myofiber atrophy and impairment of muscle regeneration in necrotizing autoimmune myopathies. Ann. Neurol. 81, 538–548 (2017).

    Article  CAS  PubMed  Google Scholar 

  221. Bergua, C. et al. In vivo pathogenicity of IgG from patients with anti-SRP or anti-HMGCR autoantibodies in immune-mediated necrotising myopathy. Ann. Rheum. Dis. 78, 131–139 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Nishikai, M. & Reichlin, M. Heterogeneity of precipitating antibodies in polymyositis and dermatomyositis. Characterization of the Jo-1 antibody system. Arthritis Rheum. 23, 881–888 (1980).

    Article  CAS  PubMed  Google Scholar 

  223. Mathews, M. B. & Bernstein, R. M. Myositis autoantibody inhibits histidyl-tRNA synthetase: a model for autoimmunity. Nature 304, 177–179 (1983).

    Article  CAS  PubMed  Google Scholar 

  224. Mahler, M. et al. Comparison of three immunoassays for the detection of myositis specific antibodies. Front. Immunol. 10, 848 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Damoiseaux, J., Mammen, A. L., Piette, Y., Benveniste, O. & Allenbach, Y. 256th ENMC international workshop: myositis specific and associated autoantibodies (MSA-ab): Amsterdam, The Netherlands, 8–10 October 2021. Neuromuscul. Disord. 32, 594–608 (2022).

    Article  PubMed  Google Scholar 

  226. Loganathan, A. et al. The use of ELISA is comparable to immunoprecipitation in the detection of selected myositis-specific autoantibodies in a European population. Front. Immunol. 13, 975939 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ghirardello, A. et al. Diagnostic performance and validation of autoantibody testing in myositis by a commercial line blot assay. Rheumatology 49, 2370–2374 (2010).

    Article  CAS  PubMed  Google Scholar 

  228. Tansley, S. L. et al. The promise, perceptions, and pitfalls of immunoassays for autoantibody testing in myositis. Arthritis Res. Ther. 22, 117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Cavazzana, I. et al. Evaluation of a novel particle-based assay for detection of autoantibodies in idiopathic inflammatory myopathies. J. Immunol. Methods 474, 112661 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Mahler, M. & Fritzler, M. J. Detection of myositis-specific antibodies: additional notes. Ann. Rheum. Dis. 78, e29 (2019).

    Article  Google Scholar 

  231. Espinosa-Ortega, F. et al. Comparison of autoantibody specificities tested by a line blot assay and immunoprecipitation-based algorithm in patients with idiopathic inflammatory myopathies. Ann. Rheum. Dis. 78, 858–860 (2019).

    Article  PubMed  Google Scholar 

  232. Tansley, S. L., Li, D., Betteridge, Z. E. & McHugh, N. J. The reliability of immunoassays to detect autoantibodies in patients with myositis is dependent on autoantibody specificity. Rheumatology 59, 2109–2114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Anderson, H. T., O’Donnell, J. L., Tustin, P. & Steele, R. Diagnosis and subtyping of idiopathic inflammatory myopathies: caution required in the use of myositis autoantibodies. Intern. Med. J. 54, 682–686 (2024).

    Article  CAS  PubMed  Google Scholar 

  234. Chang, Y. C., Yang, L. & Budhram, A. Positive predictive value of myositis antibody line blot testing in patients with suspected idiopathic inflammatory myopathy. Muscle Nerve 69, 626–630 (2024).

    Article  CAS  PubMed  Google Scholar 

  235. Cavazzana, I. et al. Testing for myositis specific autoantibodies: comparison between line blot and immunoprecipitation assays in 57 myositis sera. J. Immunol. Methods 433, 1–5 (2016).

    Article  CAS  PubMed  Google Scholar 

  236. Nakashima, R. et al. The multicenter study of a new assay for simultaneous detection of multiple anti-aminoacyl-tRNA synthetases in myositis and interstitial pneumonia. PLoS ONE 9, e85062 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Sato, S. et al. Clinical utility of an enzyme-linked immunosorbent assay for detecting anti-melanoma differentiation-associated gene 5 autoantibodies. PLoS ONE 11, e0154285 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Muro, Y., Sugiura, K. & Akiyama, M. A new ELISA for dermatomyositis autoantibodies: rapid introduction of autoantigen cDNA to recombinant assays for autoantibody measurement. Clin. Dev. Immunol. 2013, 856815 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Waritani, T., Chang, J., McKinney, B. & Terato, K. An ELISA protocol to improve the accuracy and reliability of serological antibody assays. MethodsX 4, 153–165 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Bundell, C., Rojana-Udomsart, A., Mastaglia, F., Hollingsworth, P. & McLean-Tooke, A. Diagnostic performance of a commercial immunoblot assay for myositis antibody testing. Pathology 48, 363–366 (2016).

    Article  CAS  PubMed  Google Scholar 

  241. Vulsteke, J.-B. et al. Detection of myositis-specific antibodies. Ann. Rheum. Dis. 78, e7 (2019).

    Article  PubMed  Google Scholar 

  242. Richards, M. et al. Autoantibodies to Mi-2 alpha and Mi-2 beta in patients with idiopathic inflammatory myopathy. Rheumatology 58, 1655–1661 (2019).

    Article  CAS  PubMed  Google Scholar 

  243. Lundberg, I. E. et al. 2017 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Adult and Juvenile Idiopathic Inflammatory Myopathies and Their Major Subgroups. Arthritis Rheumatol. 69, 2271–2282 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.R.W. is supported by the National Institute for Health Research (NIHR) via the NIHR-Biomedical Research Centre at Great Ormond Street Hospital and an NIHR Senior Investigator award. The views expressed are those of the author and not necessarily those of the National Health Service, the NIHR or the Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Contributions

D.A.I., N.A.A. and A.I.R.-L. researched data for the article and contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to David A. Isenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nature Reviews Rheumatology thanks Chester Oddis and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allameen, N.A., Ramos-Lisbona, A.I., Wedderburn, L.R. et al. An update on autoantibodies in the idiopathic inflammatory myopathies. Nat Rev Rheumatol 21, 46–62 (2025). https://doi.org/10.1038/s41584-024-01188-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01188-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research