SlideShare a Scribd company logo
1 of 69
Download to read offline
From Data to AI with the
MACHINE LEARNING
CANVAS
@louisdorard

#odsc - 2017/10/13
1. Descriptive analysis
2. Predictive analysis
3. Prescriptive analysis
4. Automated decisions
2
(Big?) Data analysis
“big data”, reporting,
old-school BI…
now we’re talking!
“Artificial Intelligence”!!
??
Which Machine Learner do you want to be?
“DataRobot automatically searches
through millions of combinations of
algorithms, data preprocessing steps,
transformations, features, and tuning
parameters for the best machine learning
model for your data. Each model is
unique — fine-tuned for the specific
dataset and prediction target.” https://
www.datarobot.com/product/
–Jeremy Howard (Designing great data products)
“Great predictive modeling is an
important part of the solution, but it no
longer stands on its own; as products
become more sophisticated, it disappears
into the plumbing.”
@louisdorard
19
Machine Learning “workflow”
most of the
work is here!
after learning before learning
• Technical:

• Getting data in ML-ready format 

• Creating the best model for this data

• Deploying models

• Semi-technical:

• Trusting models 

• Formalizing ML problems
20
Main barriers to integrating ML in real-world products
• Which are the Inputs and Outputs? Features?

• Anticipate how you’ll use predictive models:
• When/how often you’ll need to…

• Make predictions (to deliver value) ❤

• Learn/update models from (new) data

• How much time you’ll have for that

• Any other technical constraints? (e.g. model memory footprint)

• How will you inspect and evaluate predictive models? (so you can trust them)
21
Formalizing ML problems
Decisions from
predictions
AI-
inside
AI-
first
Artificial Intelligence: emulation of human
behavior?
Artificial Intelligence is a quality that can
emerge when using ML in a product.
An (artificially) intelligent product/program is
one that makes useful decisions on its own.
An (artificially) intelligent product/program is
one that makes useful decisions automatically.
• Who: SaaS company selling monthly subscription

• Question asked: “Is this customer going to leave within 1 month?”

• Input: customer

• Output: no-churn or churn

• Data collection: customer snapshots from 1 month ago; now, 1
month later, we know who left

• How predictions are used: target customers classified as churn in
retention efforts/campaign
30
Churn prediction
Assume we know who’s going to churn. What do we do?

• Contact all/some of them? Which ones first?

• Switch to different plan?

• Give special offer?

• Etc.

• No action?
31
Churn prevention
1. Descriptive: show churn rate against time

2. Predictive: show which customers will churn next

3. Prescriptive: suggest which customers to target for
prevention efforts

4. Automated: campaigns sent automatically
32
Phases of churn analysis
• Targeting a customer has a cost

• For each TP we “gain”: (success rate of targeting) *
(customer revenue /month)

• Imagine…

• We make perfect predictions and target all Positives

• Revenue /month = 10€ for all customers

• Success rate of targeting = 20%

• Cost of targeting = 2€

• What is the Return On Investment?
33
Quizz: churn prevention ROI
3. Prescriptive: prioritize customers to target, based on…

• Customer representations (i.e. feature values for each)

• Churn predictions

• Uncertainty in predictions

• Revenue brought by each customer

• Constraints on targeting frequency
34
Prescriptions to prevent churn
• Compute feature values for given input (a.k.a. “featurize”; involves
merging data sources, aggregating data…)

• Collect training data (inputs and outputs)

• Provide predictive model from given training set (i.e. learn)

• Provide prediction against model for given input (context)

• Provide optimal decision from given contextual data, predictions,
uncertainties, constraints, objectives, costs

• Apply given decision
35
Software components for automated decisions
• Compute feature values for given input (a.k.a. “featurize”; involves
merging data sources, aggregating data…)

• Collect training data (inputs and outputs)

• Provide predictive model from given training set (i.e. learn)

• Provide prediction against model for given input (context)

• Provide optimal decision from given contextual data, predictions,
uncertainties, constraints, objectives, costs

• Apply given decision
36
Application-specific component
• Compute feature values for given input (a.k.a. “featurize”; involves
merging data sources, aggregating data…)

• Collect training data (inputs and outputs)

• Provide predictive model from given training set (i.e. learn)

• Provide prediction against model for given input (context)

• Provide optimal decision from given contextual data, predictions,
uncertainties, constraints, objectives, costs

• Apply given decision
37
Optimization / Operations Research component
• Compute feature values for given input (a.k.a. “featurize”; involves
merging data sources, aggregating data…)

• Collect training data (inputs and outputs)

• Provide predictive model from given training set (i.e. learn)

• Provide prediction against model for given input (context)

• Provide optimal decision from given contextual data, predictions,
uncertainties, constraints, objectives, costs

• Apply given decision
38
Machine Learning components
• Compute feature values for given input (a.k.a. “featurize”; involves
merging data sources, aggregating data…)

• Collect training data (inputs and outputs)

• Provide predictive model from given training set (i.e. learn)

• Provide prediction against model for given input (context)

• Provide optimal decision from given contextual data, predictions,
uncertainties, constraints, objectives, costs

• Apply given decision
39
Data Engineering components
Machine Learning Canvas
41
The Canvas Concept
42
The Machine Learning Canvas
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
• Started as a mini framework: Who, Question asked,
Input, Output, Features, Data collection, How predictions
are used

• Used it and refined it when consulting

• Made it into a visual chart and iterated on the design

• Used at Konica Minolta, BlaBlaCar, La Poste, Dassault
Systemes, Data Science Academy, UCL
43
Origins of the ML Canvas
• (Not an adaptation of the Business Model Canvas)

• Describe the Learning part of an AI system:

• What data are we learning from?

• How are we using predictions powered by that learning?

• How are we making sure that the whole thing “works”
through time?
44
The Machine Learning Canvas
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
LEARNPREDICT
EVALUATE
GOAL
(what, why, who)
how how
how well
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
background
specifics
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
background
specifics
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
background
specifics
LEARNPREDICT
EVALUATE
GOAL
(what, why, who)
Domain
Integration
Predictive
Engine
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
Move important incoming
emails to a dedicated section
at the top of the inbox
We want to be able to answer
the question
“Is this email important?”
before the user gets a chance to
see the email
• Input: email
• Output:
“Important” (Positive class)
or “Regular”
-> Binary Classification
Make it easier for users of an
email client to identify
new important emails in their
inbox, by automatically
detecting them and making
them more visible in the inbox
(this detection must happen
before user sees email)
The objective is that users
spend less them in their inbox
and reply to important emails
more quickly
• Previous email messages
(as mbox files or in other
type of database)
• Address book
• Calendar
• Explicit labelling: users
can manually label emails
as important or not, by
clicking on an icon next to
each email’s subject
• Implicit labelling:
heuristics based on user
behavior after getting the
email (e.g. replying fast,
deleting without reading,
etc.)
Every time we receive an
email addressed to our user,
which starts a new thread
(otherwise the importance is
just the same as that of the
thread)
We aim to put the email in the
right section of the inbox,
within a 2s period
FP costs 1, FN costs 3.
For each user: take last 3
months of emails for test and
12 months before for
training. We make P.I.
feature available to user if…
• Cost < baseline heuristic
(e.g. “if sender in address
book then important”)
• No more than 1 error per X
emails
One model per user, initially
built on last 12 months of
email data, that we update…
• When an error is signaled
by the user via manual
labelling
• Every 5’ by adding new
data from implicit
labelling, if any
Per week:
• Ratio: #errors explicitly reported by user / #emails
received
• Same w. errors seen via implicit labelling
• Average time taken to reply to important emails
• Total time spent on inbox
Priority Inbox (PI) Louis Dorard Jan. 2017 1
• Content features: subject,
body, attachments, size
• Social features: based on
info about sender (e.g. in
address book?), previous
interactions, contextual
(e.g. upcoming meeting w.
sender)
• Email labels (typically
assigned via manual rules
defined by user)
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
If probability of Positive…
• > M: approve
• < m: reject
Otherwise request human
decision
Thresholds m and M are
chosen to maximize offline
evaluation (performed right
after model update)
“Is this review legit or fake?”
• Input: review
• Output: “legit” or
“fake” (Positive class)
-> Binary classification
Note: the distribution of
outputs is typically 70-30
(legit vs fake)
Reject fake incoming reviews
and approve legit
reviews automatically.
Flag fake reviews in database
to stop displaying them /
using them to compute
average ratings. Have ratings
which are closer to the truth.
Improve customer experience
and satisfaction (less
surprises).
• User database
• Reviews database
• Social networks
• Crowdsourcing platform
(e.g. Mechanical Turk)
• Initially: active learning
using crowdsourcing
platform
• Internal, manual labelling
• When explicitly
requested (complaint, or
model’s probability in
between thresholds)
• Randomly selected
reviews every day (as
many as allowed for a
budget of $X /day)
We receive X reviews / minute
on average. We can allow a
delay of 1 day / review, but
including 1/2 day for
manual review if we’re in
between thresholds.
Train model with data up
until 1 wk ago. Compute total
cost on last wk’s data, for
different values of m and M
(starting at m=0 and M=1),
taking into account:
• Gain of correct, automated
decision = - Cost of
manual decision
• Cost of FN (when review
sentiment positive /
negative)
• Cost of FP (smaller)
One model per language/
country
Somewhat adversarial setting
=> Keep on learning
=> Every week we update our
models by adding all the data
from last week. We allow a
day for this.
Every week:
• Average customer satisfaction
• # customer complaints
• # hotel complaints
• # manual reviews
Fake review detection Louis Dorard Jan. 2017 1
• Content of review: rating,
text, length, # capitals…
• Other predictions:
sentiment, emotion, etc.
• User: basic info, # previous
bookings, # approved
reviews, # rejected reviews
• Metadata (e.g. IP)
• Product being reviewed (e.g.
hotel chain)
• Similarity with prev.
reviews (total score)
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
Every week:
• Compute predictions for all
houses currently on the
market
• Filter out 50% randomly
(hold out set)
• Filter out properties where
asking price is higher
• Prioritize best deals first
and schedule visits
• Review manually and buy
at asking price or lower
« How much is this property
worth? »
• Input: property
• Output: value
-> regression task
OR
« Is this a good deal? »
-> classification task
Make better real-estate
investments: compare
price predictions with actual
asking price of properties on the
market, to find the best deals.
• Redfin
• Open data: public transports,
schools, etc.
• Google Maps
Every week request Redfin data
on:
- New properties on the
market. Should contain
property characteristics +
asking price
- Sale records (initially:
records for the past year).
Should contain properties
previously seen, but this
time with actual sale price.
Every week we make predictions
for new properties for sale
(using all property info
available except asking price).
Test on the last month of
labelled data, manually review
errors and compute…
• Average percentage error
• Cost: for bad deals (sale
price < asking) that were
seen as good deals (asking
< prediction), we would
have incurred a cost of
(asking - sale price) in case
we would have gone through
with investment.
Only keep data up until a year
in the past
Update model every month
(with new data available)
• Investment return (should go up)
• Time spent visiting properties (should go down as we’re
smarter about which we want to visit)
• Sale price compared to prediction, on hold out set
Real-estate deals Louis Dorard Jan. 2017 1
• Property basic info
• Extracted from text
description:
• Has swimming pool
• …
• Location:
• Latitude, longitude
• Address
• Distance to closest transports
and shops
• Average rating of schools in
5 mile radius
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
On 1st day of every month:
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Target customers
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight.
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
Every month we create a new
model from the previous
month’s customers.
• Monitor churn rate
• Monitor (#non-churn among targeted) / #targets
Customer retention Louis Dorard Sept. 2016 1
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
On 1st day of every month:
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Target customers
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight.
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
Every month we create a new
model from the previous
month’s customers.
• Monitor churn rate
• Monitor (#non-churn among targeted) / #targets
Customer retention Louis Dorard Sept. 2016 1
• We predicted customer would churn, but in the end they didn’t… 

• Great! Prevention works!

• Sh*t! Data inconsistent…

• Imagine that:

• client1 and client2 very similar & predicted to churn

• only client2 was targeted, and we made him stay
Input Output
client1 Churn
client2 No-churn
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
On 1st day of every month:
• Randomly filter out 50% of
customers (hold-out set)
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Target customers
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight.
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
• Monitor churn rate
• Monitor (#non-churn among targeted) / #targets
Customer retention Louis Dorard Sept. 2016 1
Every month we create a new
model from the previous
month’s customers.
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
On 1st day of every month:
• Randomly filter out 50% of
customers (hold-out set)
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Target customers
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight.
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
Every month we create a new
model from the previous
month’s hold-out set (or the
whole set, when initializing
this system).
We do this overnight (along
with making predictions).
• Monitor churn rate
• Monitor (#non-churn among targeted) / #targets
Customer retention Louis Dorard Sept. 2016 1
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
On 1st day of every month:
• Randomly filter out 50% of
customers (hold-out set)
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Target customers
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight.
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
Every month we create a new
model from the previous
month’s hold-out set (or the
whole set, when initializing
this system).
We do this overnight (along
with making predictions).
• Accuracy of last month’s predictions on hold-out set
• Compare churn rate & lost revenue between last month’s
hold-out set and remaining set
• Monitor (#non-churn among targeted) / #targets
• Monitor ROI (based on diff. in lost revenue & cost of
retention campaign)
Customer retention Louis Dorard Sept. 2016 1
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
On 1st day of every month:
• Randomly filter out 50% of
customers (hold-out set)
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Target customers
Before targeting customers:
• Evaluate new model’s
accuracy on pre-defined
customer profiles
• Simulate decisions taken
on last month’s customers
(using model learnt from
customers 2 months ago).
Compute ROI w. different #
customers to target &
hypotheses on retention
success rate (is it >0?)
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight (along
with building the model that
powers these predictions and
evaluating it).
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
Every month we create a new
model from the previous
month’s hold-out set (or the
whole set, when initializing
this system).
We do this overnight (along
with offline evaluation and
making predictions).
• Accuracy of last month’s predictions on hold-out set
• Compare churn rate & lost revenue between last month’s
hold-out set and remaining set
• Monitor (#non-churn among targeted) / #targets
• Monitor ROI (based on diff. in lost revenue & cost of
retention campaign)
Customer retention Louis Dorard Sept. 2016 1
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
Before targeting customers:
• Evaluate new model’s
accuracy on pre-defined
customer profiles
• Simulate decisions taken
on last month’s customers
(using model learnt from
customers 2 months ago).
Compute ROI w. different #
customers to target &
hypotheses on retention
success rate (is it >0?)
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight (along
with building the model that
powers these predictions and
evaluating it).
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
Every month we create a new
model from the previous
month’s hold-out set (or the
whole set, when initializing
this system).
We do this overnight (along
with offline evaluation and
making predictions).
• Accuracy of last month’s predictions on hold-out set
• Compare churn rate & lost revenue between last month’s
hold-out set and remaining set
• Monitor (#non-churn among targeted) / #targets
• Monitor ROI (based on diff. in lost revenue & cost of
retention campaign)
Customer retention Louis Dorard Sept. 2016 1
On 1st day of every month:
• Randomly filter out 50% of
customers (hold-out set)
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Target as many customers
as suggested by simulation
61
Cross Industry Standard Process for Data Mining
By Kenneth Jensen -
Own work, CC BY-SA 3.0
ML Canvas
• Adapt use cases from other industries/companies?

• Start from value proposition?

• Can you formalize a classification or regression problem?

• Start from a classification or regression problem?

• How do you go from predictions to value creation?

• Start from data sources: what if we could predict this?
62
Coming up with a good ML use case
• For each use case idea:

• Evaluate how difficult data collection and extraction will
be

• Evaluate potential for the business

• Start with low-hanging fruit: easy and high potential

• Fill in MLC
63
Coming up with a good ML use case
• Fill in MLC

• Choose technologies to use

• Implement data collection asap
64
From MLC to Data Preparation
• Feature extraction from sources of raw data

• Exploratory Data Analysis (with visualization and statistics)

• Spot problems early… reality check!

• Discover things you don’t already know

• Test hypotheses

• Data cleansing

• Modeling, offline evaluation and inspection
65
From Data Preparation to PoC
• Pipeline: extraction + cleansing + modeling + evaluation

• Live evaluation and monitoring (e.g. A/B test)
66
From PoC to deployment
–Ingolf Mollat, Principal Consultant at Blue Yonder
“The Machine Learning Canvas is
providing our clients real business value by
supplying the first critical entry point for
their implementation of predictive
applications.”
• Assist data scientists, software engineers, product and
business managers, in aligning their activities

• Make sure all efforts are directed at solving the right
problem!

• Guide project management
68
Why fill in ML canvas early
• Download ML Starter Kit (includes canvas + PDF guide)
from louisdorard.com 

• UCL Engineering’s ML Academy
• Evening course, once a week, over 6 weeks

• Starts on Monday at IDEALondon

• Email l.dorard@ucl.ac.uk to apply
69
Learn more

More Related Content

What's hot

Mother of Language`s Langchain
Mother of Language`s LangchainMother of Language`s Langchain
Mother of Language`s LangchainJun-hang Lee
 
KNIME Data Science Learnathon: From Raw Data To Deployment
KNIME Data Science Learnathon: From Raw Data To DeploymentKNIME Data Science Learnathon: From Raw Data To Deployment
KNIME Data Science Learnathon: From Raw Data To DeploymentKNIMESlides
 
Interpretable machine learning
Interpretable machine learningInterpretable machine learning
Interpretable machine learningSri Ambati
 
ML Infra for Netflix Recommendations - AI NEXTCon talk
ML Infra for Netflix Recommendations - AI NEXTCon talkML Infra for Netflix Recommendations - AI NEXTCon talk
ML Infra for Netflix Recommendations - AI NEXTCon talkFaisal Siddiqi
 
Product Management for AI by Google PM
Product Management for AI by Google PMProduct Management for AI by Google PM
Product Management for AI by Google PMProduct School
 
Exploring Opportunities in the Generative AI Value Chain.pdf
Exploring Opportunities in the Generative AI Value Chain.pdfExploring Opportunities in the Generative AI Value Chain.pdf
Exploring Opportunities in the Generative AI Value Chain.pdfDung Hoang
 
Big data landscape v 3.0 - Matt Turck (FirstMark)
Big data landscape v 3.0 - Matt Turck (FirstMark) Big data landscape v 3.0 - Matt Turck (FirstMark)
Big data landscape v 3.0 - Matt Turck (FirstMark) Matt Turck
 
Leveraging Generative AI & Best practices
Leveraging Generative AI & Best practicesLeveraging Generative AI & Best practices
Leveraging Generative AI & Best practicesDianaGray10
 
Data Analytics for Finance
Data Analytics for FinanceData Analytics for Finance
Data Analytics for Financeellenica
 
The path to success with Graph Database and Graph Data Science
The path to success with Graph Database and Graph Data ScienceThe path to success with Graph Database and Graph Data Science
The path to success with Graph Database and Graph Data ScienceNeo4j
 
Advances in Exploratory Data Analysis, Visualisation and Quality for Data Cen...
Advances in Exploratory Data Analysis, Visualisation and Quality for Data Cen...Advances in Exploratory Data Analysis, Visualisation and Quality for Data Cen...
Advances in Exploratory Data Analysis, Visualisation and Quality for Data Cen...Hima Patel
 
stackconf 2022: Introduction to Vector Search with Weaviate
stackconf 2022: Introduction to Vector Search with Weaviatestackconf 2022: Introduction to Vector Search with Weaviate
stackconf 2022: Introduction to Vector Search with WeaviateNETWAYS
 
Data Engineer's Lunch #81: Reverse ETL Tools for Modern Data Platforms
Data Engineer's Lunch #81: Reverse ETL Tools for Modern Data PlatformsData Engineer's Lunch #81: Reverse ETL Tools for Modern Data Platforms
Data Engineer's Lunch #81: Reverse ETL Tools for Modern Data PlatformsAnant Corporation
 
Data Lake Overview
Data Lake OverviewData Lake Overview
Data Lake OverviewJames Serra
 
Neo4j Popular use case
Neo4j Popular use case Neo4j Popular use case
Neo4j Popular use case Neo4j
 
KNIME Software Overview
KNIME Software OverviewKNIME Software Overview
KNIME Software OverviewKNIMESlides
 
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...Databricks
 

What's hot (20)

Mother of Language`s Langchain
Mother of Language`s LangchainMother of Language`s Langchain
Mother of Language`s Langchain
 
Data science in finance industry
Data science in finance industryData science in finance industry
Data science in finance industry
 
KNIME Data Science Learnathon: From Raw Data To Deployment
KNIME Data Science Learnathon: From Raw Data To DeploymentKNIME Data Science Learnathon: From Raw Data To Deployment
KNIME Data Science Learnathon: From Raw Data To Deployment
 
Interpretable machine learning
Interpretable machine learningInterpretable machine learning
Interpretable machine learning
 
ML Infra for Netflix Recommendations - AI NEXTCon talk
ML Infra for Netflix Recommendations - AI NEXTCon talkML Infra for Netflix Recommendations - AI NEXTCon talk
ML Infra for Netflix Recommendations - AI NEXTCon talk
 
Product Management for AI by Google PM
Product Management for AI by Google PMProduct Management for AI by Google PM
Product Management for AI by Google PM
 
Exploring Opportunities in the Generative AI Value Chain.pdf
Exploring Opportunities in the Generative AI Value Chain.pdfExploring Opportunities in the Generative AI Value Chain.pdf
Exploring Opportunities in the Generative AI Value Chain.pdf
 
AI and Data Science.pdf
AI and Data Science.pdfAI and Data Science.pdf
AI and Data Science.pdf
 
Big data landscape v 3.0 - Matt Turck (FirstMark)
Big data landscape v 3.0 - Matt Turck (FirstMark) Big data landscape v 3.0 - Matt Turck (FirstMark)
Big data landscape v 3.0 - Matt Turck (FirstMark)
 
Leveraging Generative AI & Best practices
Leveraging Generative AI & Best practicesLeveraging Generative AI & Best practices
Leveraging Generative AI & Best practices
 
Data Analytics for Finance
Data Analytics for FinanceData Analytics for Finance
Data Analytics for Finance
 
The path to success with Graph Database and Graph Data Science
The path to success with Graph Database and Graph Data ScienceThe path to success with Graph Database and Graph Data Science
The path to success with Graph Database and Graph Data Science
 
Advances in Exploratory Data Analysis, Visualisation and Quality for Data Cen...
Advances in Exploratory Data Analysis, Visualisation and Quality for Data Cen...Advances in Exploratory Data Analysis, Visualisation and Quality for Data Cen...
Advances in Exploratory Data Analysis, Visualisation and Quality for Data Cen...
 
stackconf 2022: Introduction to Vector Search with Weaviate
stackconf 2022: Introduction to Vector Search with Weaviatestackconf 2022: Introduction to Vector Search with Weaviate
stackconf 2022: Introduction to Vector Search with Weaviate
 
Data Engineer's Lunch #81: Reverse ETL Tools for Modern Data Platforms
Data Engineer's Lunch #81: Reverse ETL Tools for Modern Data PlatformsData Engineer's Lunch #81: Reverse ETL Tools for Modern Data Platforms
Data Engineer's Lunch #81: Reverse ETL Tools for Modern Data Platforms
 
Data Product Architectures
Data Product ArchitecturesData Product Architectures
Data Product Architectures
 
Data Lake Overview
Data Lake OverviewData Lake Overview
Data Lake Overview
 
Neo4j Popular use case
Neo4j Popular use case Neo4j Popular use case
Neo4j Popular use case
 
KNIME Software Overview
KNIME Software OverviewKNIME Software Overview
KNIME Software Overview
 
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...
 

Viewers also liked

5.4 Arbres et forêts aléatoires
5.4 Arbres et forêts aléatoires5.4 Arbres et forêts aléatoires
5.4 Arbres et forêts aléatoiresBoris Guarisma
 
( Big ) Data Management - Data Mining and Machine Learning - Global concepts ...
( Big ) Data Management - Data Mining and Machine Learning - Global concepts ...( Big ) Data Management - Data Mining and Machine Learning - Global concepts ...
( Big ) Data Management - Data Mining and Machine Learning - Global concepts ...Nicolas Sarramagna
 
Bootstrapping Machine Learning
Bootstrapping Machine LearningBootstrapping Machine Learning
Bootstrapping Machine LearningLouis Dorard
 
Construindo Produtos Inovadores
Construindo Produtos InovadoresConstruindo Produtos Inovadores
Construindo Produtos InovadoresHumberto Moura
 
Seminario Business Model Canvas
Seminario Business Model CanvasSeminario Business Model Canvas
Seminario Business Model CanvasFrancesco Zitelli
 
Canvas
CanvasCanvas
CanvasRajon
 
The DATA RING - A canvas for DATA PROJECT
The DATA RING - A canvas for DATA PROJECTThe DATA RING - A canvas for DATA PROJECT
The DATA RING - A canvas for DATA PROJECTTOP-IX Consortium
 
Feedback Canvas - Agile Portugal 2017
Feedback Canvas - Agile Portugal 2017Feedback Canvas - Agile Portugal 2017
Feedback Canvas - Agile Portugal 2017Ricardo Fernandes
 
Templates: Mapa da Empatia, Canvas da Proposta de Valor, Canvas do Modelo de ...
Templates: Mapa da Empatia, Canvas da Proposta de Valor, Canvas do Modelo de ...Templates: Mapa da Empatia, Canvas da Proposta de Valor, Canvas do Modelo de ...
Templates: Mapa da Empatia, Canvas da Proposta de Valor, Canvas do Modelo de ...Alessandro Almeida
 
Inovação em modelos de negócios já estabelecidos o analista de modelos de n...
Inovação em modelos de negócios já estabelecidos   o analista de modelos de n...Inovação em modelos de negócios já estabelecidos   o analista de modelos de n...
Inovação em modelos de negócios já estabelecidos o analista de modelos de n...Daniel Pereira
 
Palestra Experiência do Cliente
Palestra Experiência do ClientePalestra Experiência do Cliente
Palestra Experiência do ClienteMarcus Pimenta
 
Memoria Seminario sobre Canvas Model com Alexander Osterwlader - by Luiz Rolim
Memoria Seminario sobre Canvas Model com Alexander Osterwlader - by Luiz RolimMemoria Seminario sobre Canvas Model com Alexander Osterwlader - by Luiz Rolim
Memoria Seminario sobre Canvas Model com Alexander Osterwlader - by Luiz RolimLuiz Moura
 
Strategic Business Model Canvas v3
Strategic Business Model Canvas v3Strategic Business Model Canvas v3
Strategic Business Model Canvas v3Mihai Ionescu
 
Company Presentation: Canvas
Company Presentation: CanvasCompany Presentation: Canvas
Company Presentation: CanvasKiley Judge
 

Viewers also liked (14)

5.4 Arbres et forêts aléatoires
5.4 Arbres et forêts aléatoires5.4 Arbres et forêts aléatoires
5.4 Arbres et forêts aléatoires
 
( Big ) Data Management - Data Mining and Machine Learning - Global concepts ...
( Big ) Data Management - Data Mining and Machine Learning - Global concepts ...( Big ) Data Management - Data Mining and Machine Learning - Global concepts ...
( Big ) Data Management - Data Mining and Machine Learning - Global concepts ...
 
Bootstrapping Machine Learning
Bootstrapping Machine LearningBootstrapping Machine Learning
Bootstrapping Machine Learning
 
Construindo Produtos Inovadores
Construindo Produtos InovadoresConstruindo Produtos Inovadores
Construindo Produtos Inovadores
 
Seminario Business Model Canvas
Seminario Business Model CanvasSeminario Business Model Canvas
Seminario Business Model Canvas
 
Canvas
CanvasCanvas
Canvas
 
The DATA RING - A canvas for DATA PROJECT
The DATA RING - A canvas for DATA PROJECTThe DATA RING - A canvas for DATA PROJECT
The DATA RING - A canvas for DATA PROJECT
 
Feedback Canvas - Agile Portugal 2017
Feedback Canvas - Agile Portugal 2017Feedback Canvas - Agile Portugal 2017
Feedback Canvas - Agile Portugal 2017
 
Templates: Mapa da Empatia, Canvas da Proposta de Valor, Canvas do Modelo de ...
Templates: Mapa da Empatia, Canvas da Proposta de Valor, Canvas do Modelo de ...Templates: Mapa da Empatia, Canvas da Proposta de Valor, Canvas do Modelo de ...
Templates: Mapa da Empatia, Canvas da Proposta de Valor, Canvas do Modelo de ...
 
Inovação em modelos de negócios já estabelecidos o analista de modelos de n...
Inovação em modelos de negócios já estabelecidos   o analista de modelos de n...Inovação em modelos de negócios já estabelecidos   o analista de modelos de n...
Inovação em modelos de negócios já estabelecidos o analista de modelos de n...
 
Palestra Experiência do Cliente
Palestra Experiência do ClientePalestra Experiência do Cliente
Palestra Experiência do Cliente
 
Memoria Seminario sobre Canvas Model com Alexander Osterwlader - by Luiz Rolim
Memoria Seminario sobre Canvas Model com Alexander Osterwlader - by Luiz RolimMemoria Seminario sobre Canvas Model com Alexander Osterwlader - by Luiz Rolim
Memoria Seminario sobre Canvas Model com Alexander Osterwlader - by Luiz Rolim
 
Strategic Business Model Canvas v3
Strategic Business Model Canvas v3Strategic Business Model Canvas v3
Strategic Business Model Canvas v3
 
Company Presentation: Canvas
Company Presentation: CanvasCompany Presentation: Canvas
Company Presentation: Canvas
 

Similar to From Data to Artificial Intelligence with the Machine Learning Canvas — ODSC version

A business level introduction to Artificial Intelligence - Louis Dorard @ PAP...
A business level introduction to Artificial Intelligence - Louis Dorard @ PAP...A business level introduction to Artificial Intelligence - Louis Dorard @ PAP...
A business level introduction to Artificial Intelligence - Louis Dorard @ PAP...PAPIs.io
 
Pragmatic Machine Learning @ ML Spain
Pragmatic Machine Learning @ ML SpainPragmatic Machine Learning @ ML Spain
Pragmatic Machine Learning @ ML SpainLouis Dorard
 
predictive analysis and usage in procurement ppt 2017
predictive analysis and usage in procurement  ppt 2017predictive analysis and usage in procurement  ppt 2017
predictive analysis and usage in procurement ppt 2017Prashant Bhatmule
 
Net campus2015 antimomusone
Net campus2015 antimomusoneNet campus2015 antimomusone
Net campus2015 antimomusoneDotNetCampus
 
PREDICT THE FUTURE , MACHINE LEARNING & BIG DATA
PREDICT THE FUTURE , MACHINE LEARNING & BIG DATAPREDICT THE FUTURE , MACHINE LEARNING & BIG DATA
PREDICT THE FUTURE , MACHINE LEARNING & BIG DATADotNetCampus
 
BMDSE v1 - Data Scientist Deck
BMDSE v1 - Data Scientist DeckBMDSE v1 - Data Scientist Deck
BMDSE v1 - Data Scientist DeckSasha Lazarevic
 
Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...
Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...
Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...Ali Alkan
 
Future of AI-powered automation in business
Future of AI-powered automation in businessFuture of AI-powered automation in business
Future of AI-powered automation in businessLouis Dorard
 
ML Application Life Cycle
ML Application Life CycleML Application Life Cycle
ML Application Life CycleSrujanaMerugu1
 
Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learningshivani saluja
 
Chainsaw Conjoint
Chainsaw ConjointChainsaw Conjoint
Chainsaw ConjointQuestionPro
 
Machine Learning 2 deep Learning: An Intro
Machine Learning 2 deep Learning: An IntroMachine Learning 2 deep Learning: An Intro
Machine Learning 2 deep Learning: An IntroSi Krishan
 
Azure Machine Learning
Azure Machine LearningAzure Machine Learning
Azure Machine LearningMostafa
 
Barga Data Science lecture 2
Barga Data Science lecture 2Barga Data Science lecture 2
Barga Data Science lecture 2Roger Barga
 
Machine learning in production
Machine learning in productionMachine learning in production
Machine learning in productionTuri, Inc.
 
AI-900 - Fundamental Principles of ML.pptx
AI-900 - Fundamental Principles of ML.pptxAI-900 - Fundamental Principles of ML.pptx
AI-900 - Fundamental Principles of ML.pptxkprasad8
 
Machine learning and big data
Machine learning and big dataMachine learning and big data
Machine learning and big dataPoo Kuan Hoong
 

Similar to From Data to Artificial Intelligence with the Machine Learning Canvas — ODSC version (20)

A business level introduction to Artificial Intelligence - Louis Dorard @ PAP...
A business level introduction to Artificial Intelligence - Louis Dorard @ PAP...A business level introduction to Artificial Intelligence - Louis Dorard @ PAP...
A business level introduction to Artificial Intelligence - Louis Dorard @ PAP...
 
Pragmatic Machine Learning @ ML Spain
Pragmatic Machine Learning @ ML SpainPragmatic Machine Learning @ ML Spain
Pragmatic Machine Learning @ ML Spain
 
Ai in finance
Ai in financeAi in finance
Ai in finance
 
predictive analysis and usage in procurement ppt 2017
predictive analysis and usage in procurement  ppt 2017predictive analysis and usage in procurement  ppt 2017
predictive analysis and usage in procurement ppt 2017
 
Net campus2015 antimomusone
Net campus2015 antimomusoneNet campus2015 antimomusone
Net campus2015 antimomusone
 
PREDICT THE FUTURE , MACHINE LEARNING & BIG DATA
PREDICT THE FUTURE , MACHINE LEARNING & BIG DATAPREDICT THE FUTURE , MACHINE LEARNING & BIG DATA
PREDICT THE FUTURE , MACHINE LEARNING & BIG DATA
 
Image Analytics for Retail
Image Analytics for RetailImage Analytics for Retail
Image Analytics for Retail
 
BMDSE v1 - Data Scientist Deck
BMDSE v1 - Data Scientist DeckBMDSE v1 - Data Scientist Deck
BMDSE v1 - Data Scientist Deck
 
Analytics in Online Retail
Analytics in Online RetailAnalytics in Online Retail
Analytics in Online Retail
 
Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...
Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...
Makine Öğrenmesi, Yapay Zeka ve Veri Bilimi Süreçlerinin Otomatikleştirilmesi...
 
Future of AI-powered automation in business
Future of AI-powered automation in businessFuture of AI-powered automation in business
Future of AI-powered automation in business
 
ML Application Life Cycle
ML Application Life CycleML Application Life Cycle
ML Application Life Cycle
 
Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learning
 
Chainsaw Conjoint
Chainsaw ConjointChainsaw Conjoint
Chainsaw Conjoint
 
Machine Learning 2 deep Learning: An Intro
Machine Learning 2 deep Learning: An IntroMachine Learning 2 deep Learning: An Intro
Machine Learning 2 deep Learning: An Intro
 
Azure Machine Learning
Azure Machine LearningAzure Machine Learning
Azure Machine Learning
 
Barga Data Science lecture 2
Barga Data Science lecture 2Barga Data Science lecture 2
Barga Data Science lecture 2
 
Machine learning in production
Machine learning in productionMachine learning in production
Machine learning in production
 
AI-900 - Fundamental Principles of ML.pptx
AI-900 - Fundamental Principles of ML.pptxAI-900 - Fundamental Principles of ML.pptx
AI-900 - Fundamental Principles of ML.pptx
 
Machine learning and big data
Machine learning and big dataMachine learning and big data
Machine learning and big data
 

More from Louis Dorard

Machine Learning: je m'y mets demain!
Machine Learning: je m'y mets demain!Machine Learning: je m'y mets demain!
Machine Learning: je m'y mets demain!Louis Dorard
 
Trusting AI with important decisions
Trusting AI with important decisionsTrusting AI with important decisions
Trusting AI with important decisionsLouis Dorard
 
Predictive apps for startups
Predictive apps for startupsPredictive apps for startups
Predictive apps for startupsLouis Dorard
 
Intro to machine learning for web folks @ BlendWebMix
Intro to machine learning for web folks @ BlendWebMixIntro to machine learning for web folks @ BlendWebMix
Intro to machine learning for web folks @ BlendWebMixLouis Dorard
 
A developer's overview of the world of predictive APIs
A developer's overview of the world of predictive APIsA developer's overview of the world of predictive APIs
A developer's overview of the world of predictive APIsLouis Dorard
 
Demystifying Machine Learning
Demystifying Machine LearningDemystifying Machine Learning
Demystifying Machine LearningLouis Dorard
 
Using predictive APIs to create smarter apps
Using predictive APIs to create smarter appsUsing predictive APIs to create smarter apps
Using predictive APIs to create smarter appsLouis Dorard
 
Predictive APIs at APIdays Berlin
Predictive APIs at APIdays BerlinPredictive APIs at APIdays Berlin
Predictive APIs at APIdays BerlinLouis Dorard
 
Pragmatic machine learning for the real world
Pragmatic machine learning for the real worldPragmatic machine learning for the real world
Pragmatic machine learning for the real worldLouis Dorard
 
Data Summit Brussels: Introduction
Data Summit Brussels: IntroductionData Summit Brussels: Introduction
Data Summit Brussels: IntroductionLouis Dorard
 
Exploration & Exploitation Challenge 2011
Exploration & Exploitation Challenge 2011Exploration & Exploitation Challenge 2011
Exploration & Exploitation Challenge 2011Louis Dorard
 

More from Louis Dorard (12)

Machine Learning: je m'y mets demain!
Machine Learning: je m'y mets demain!Machine Learning: je m'y mets demain!
Machine Learning: je m'y mets demain!
 
Trusting AI with important decisions
Trusting AI with important decisionsTrusting AI with important decisions
Trusting AI with important decisions
 
Predictive apps for startups
Predictive apps for startupsPredictive apps for startups
Predictive apps for startups
 
Intro to machine learning for web folks @ BlendWebMix
Intro to machine learning for web folks @ BlendWebMixIntro to machine learning for web folks @ BlendWebMix
Intro to machine learning for web folks @ BlendWebMix
 
A developer's overview of the world of predictive APIs
A developer's overview of the world of predictive APIsA developer's overview of the world of predictive APIs
A developer's overview of the world of predictive APIs
 
Demystifying Machine Learning
Demystifying Machine LearningDemystifying Machine Learning
Demystifying Machine Learning
 
Using predictive APIs to create smarter apps
Using predictive APIs to create smarter appsUsing predictive APIs to create smarter apps
Using predictive APIs to create smarter apps
 
Predictive APIs at APIdays Berlin
Predictive APIs at APIdays BerlinPredictive APIs at APIdays Berlin
Predictive APIs at APIdays Berlin
 
Pragmatic machine learning for the real world
Pragmatic machine learning for the real worldPragmatic machine learning for the real world
Pragmatic machine learning for the real world
 
Data Summit Brussels: Introduction
Data Summit Brussels: IntroductionData Summit Brussels: Introduction
Data Summit Brussels: Introduction
 
Big Data 2.0
Big Data 2.0Big Data 2.0
Big Data 2.0
 
Exploration & Exploitation Challenge 2011
Exploration & Exploitation Challenge 2011Exploration & Exploitation Challenge 2011
Exploration & Exploitation Challenge 2011
 

Recently uploaded

Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 

Recently uploaded (20)

Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 

From Data to Artificial Intelligence with the Machine Learning Canvas — ODSC version