Abstraction-Guided Synthesis of Synchronization

Martin Vechev
IBM Research

Abstract

We present a novel framework for automatic inference of ieffic
synchronization in concurrent programs, a task known toiffie d
cult and error-prone when done manually.

Our framework is based on abstract interpretation and dan in
synchronization for infinite state programs. Given a progra
specification, and an abstraction, we infer synchronipatitat
avoids all (abstract) interleavings that may violate thecgjcation,
but permits as many valid interleavings as possible.

Combined with abstraction refinement, our framework can be
viewed as a new approach for verification where both the pragr
and the abstraction can be modified on-the-fly during thefiveri
cation process. The ability to modify the program, and ndy on
the abstraction, allows us to remove program interleavirag®nly
when they are known to be invalid, but also when they cannot be
verified using the given abstraction.

We implemented a prototype of our approach using numerical
abstractions and applied it to verify several interestiragpams.

Categories and Subject DescriptorsD.1.3 [Concurrent Pro-
gramming; D.2.4 [Program Verificatioh

General Terms Algorithms, Verification

Keywords concurrency, synthesis, abstract interpretation

1. Introduction

We presenabstraction-guided synthesa novel approach for syn-
thesizing efficient synchronization in concurrent progsa@ur ap-
proach turns the one dimensional problem of verificationennd
abstraction, in which only the abstraction can be modifiggi{t
cally via abstraction refinement), into a two-dimensioralbem,
in which both the program and the abstraction can be moditiad
til the abstraction is precise enough to verify the program.
Based on abstract interpretation [10], our technique ®¢nth
sizes a symbolic characterization sfe schedulefor concurrent
infinite-state programs. Safe schedules can be realizedooljfyn
ing the program or the scheduler:

e Concurrent programming: by automatically inferring miaim
atomic sections that prevent unsafe schedules, we assjstdh
grammer in building correct and efficient concurrent sofaya
a task known to be difficult and error-prone.

e Benevolent runtime: a scheduler that always keeps the gnmogr

execution on a safe schedule makes the runtime system more

reliable and adaptive to ever-changing environment anetysaf
requirements, without the need to modify the program.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’10, January 17-23, 2009, Madrid, Spain.

Copyright(© 2009 ACM 978-1-60558-479-9/10/01. .. $10.00

Eran Yahav
IBM Research

Greta Yorsh
IBM Research

Given a progranP, a specificatiors, and an abstraction func-
tion «, verification determines whethét =, S, that is, whether
P satisfies the specificatiofi under the abstractioa. When the
answer to this question is negative, it may be the case thairt
gram violates the specification, or that the abstractios not pre-
cise enough to show that the program satisfies it.

WhenP £, S, abstraction refinement approaches (e.g., [3, 8])
share the common goal of trying to find a finer abstractibsuch
that P =, S. In this paper, we investigate a complementary
approach, of finding a prograi?’ such thatP’ =, S under the
original abstractiony and P’ admits a subset of the behaviors of
P. Furthermore, we combine the two directions — refining the
abstraction, and restricting program behaviors, to yieldogel
abstraction-guided synthesis algorithm.

One of the main challenges in our approach is to devise an al-
gorithm for obtaining such”’ from the initial programP. In this
paper, we focus ononcurrent programsand consider changes to
P that correspond to restricting interleavings by addingchyo-
nization.

Although it is possible to apply our techniques to otherisgs,
concurrent programs are a natural fit. Concurrent programsfa
ten correct on most interleavings and only miss synchrdioizan
a few corner cases, which can be then avoided by synthesizing
ditional synchronization. Furthermore, in many casesstaming
the permitted interleavings reduces the set of reachabkgréet)
states, possibly enabling verification via a coarser attsraand
avoiding state-space explosion.

The AGS algorithm, presented in Section 4, iteratively elim
nates invalid interleavings until the abstraction is psecénough
to verify the program. Some of the (abstract) invalid irgarings
it observes may correspond to concrete invalid interlegs/iavhile
others may be artifacts of the abstraction. Whenever tharigthgn
observes an (abstract) invalid interleaving, the algoritinies to
eliminate it by either (i) modifying the program, or (ii) refing the
abstraction.

To refine the abstraction, the algorithm can use any stan-
dard technique (e.g.,[3, 8]). These include moving throagire-
determined series of domains with increasing precisiod (gpi-
cally increasing cost), or refining within the same abstdachain
by changing its parameters (e.qg., [4]).

To modify the program, we provide a novel algorithm that gen-
erates and solvestomicity constraintsAtomicity constraints de-
fine which statements have to be executed atomically, withou
intermediate context switch, to eliminate the invalid ifgavings.
This corresponds to limiting the non-deterministic cheieail-
able to the scheduler. A solution of the atomicity constsagan be
implemented by adding atomic sections to the program.

Our approach separates the process of identifying the sface
solutions (generating the atomicity constraints) fromghecess of
choosing between the possible solutions, which can be based
a quantitative criterion. As we discuss in Section 6, ouraapgh
provides a solution to guantitative synthesiproblem [5], as it

T1 { T2 { T3 { f(x) {
10 x +=z | 1. z++ | 1. y1 = f(x) if (x==1)
2. X += z 2: z++ | 20 y2 = x Iretu_r? (3; 2
. el se | X==
} } 3: assert return 6
(yl #vy2) else return 5;

}

Figure 1. Simple example computing values®f andy2.

can compute aninimally atomicsafe schedule for a program, a
schedule that poses minimal atomicity constraints onled®ings,
and does not restrict interleavings unnecessarily.

Furthermore, our approach can be instantiated with diftere
methods for: (i) modifying the program to eliminate invalider-
leavings (ii) refining the abstraction (iii) choosing opéihsolutions
(quantitative criterion) (iv) implementing the resultiaglution.

The problem we address in this paper is closely related to the
ones addressed by program repair [12, 14] and controllgheyn
sis [20]. However, in contrast to these, our approach facuse
concurrent programs, uses abstract interpretation, amdbles to
handle infinite-state programs.

1.1 Main Contributions
The contributions of this paper can be summarized as follows

¢ We provide a novel algorithm for inferring correct and effiai
synchronization in concurrent programs. The algorithnerisf
minimal atomic sections that can be verified under a given
abstraction.

e We advocate a new approach to verification where both the
program and the abstraction can be modified on the fly during
the verification process. This enables verification of aiesd
program where verification of the original program fails.

e We implemented our approach in a prototype tool called
GUARDIAN and applied it to synthesize synchronization for sev-
eral interesting programs using numerical abstractions.

1.2 Limitations

Our focus in this paper is on the AGS algorithm (Sec. 4) andron a
algorithm for eliminating invalid interleaving by addingoanic
sections. While our approach can be instantiated with uario
abstraction-refinement algorithms and abstract domaimscuor-
rent realization is quite modest:

the program there is a single value assigneglitand a single value
assigned tq;2. The assertion i3 requires that the values ofi
andy?2 are not equal. Initially, the value of all variables &re

For exampley1 gets the valug, andy?2 gets the value in the
interleaving z++; x+=z; x+=z; y1=f (x) ; y2=x; z++; assert. In
the interleavingx+=z; x+=z; y1=f (x) ; y2=x; z++; z++; assert,
y1 gets the valué, andy?2 gets the valu®.

Fig. 2 (1) shows the possible values®f andy2 that can arise
duringall possibleprogram executions, assuming that the mgtro
executes atomically. Note that in some interleavingandy2 may
be evaluated for different valuesefi.e.,z can be incremented be-
tween the assignment tol and the assignment t2). The point
yl = y2 = 3 (marked in red in Fig. 2 (I)) corresponds to values
that violate the assertion. These values arise in the fallgpwter-
leaving:z++; x+=z; yl=f(x); z++, x+=z, y2=x;assert.

Our goal is to add efficient synchronization to the prograohsu
that the assertion i3 is not violated in any execution.

The AGS algorithm iteratively eliminates invalid intenéags
(under an abstraction) by either modifying the program erdh-
straction. Fig. 2 shows how the algorithm operates on thgrarm
of Fig. 1, and how it can move on both dimensions, choosing to
modify either the program, or the abstraction, on every.sBsp
fore we explain Fig. 2, we explain how the algorithm modifies t
program to eliminate invalid iterleavings without any ahstion.

2.2 Inferring Synchronization under Full Information

We begin by considering the example program without abstrac
Since this is an illustrative finite-state program, we camufoon the
aspects of the algorithm related to generating atomicibstaints.
The algorithm accumulates atomicity constraints by iteeat
eliminating invalid interleavings. Every invalid intedeing yields
an atomicity constraint that describespossible way$o eliminate
that interleaving, by disabling context-switches thatesgppn it.
Under full information, the program of Fig. 1 has a single in-
valid interleavingz++; x+=z; yl1=f(x); z++ x+=z;, y2=x;
assert . This interleaving can be eliminated by disabling either of
the context switches that appear in this interleaving: thetext
switch betweerx+=z andx+=z in T1, betweenz++ andz++ in
T2, and betweeg1=f (x) andy2=x in T3. This corresponds to the
following atomicity constraint, generated by AGS alganith

[yl=f(x),y2=x] V[x+=z, x+=z] V[z++, z++]

This constraint is a disjunction of three atomicity pretksa of the

* The abstraction-refinement approach we use in the paper iSform 51, s2], wheres 1 ands2 are consecutive statements in the

rather simplistic. Using more sophisticated refinement ap-
proaches is a topic of future work.

e We only implement a number of simple numerical abstract
domains, which enable us to handle infinite-state numerical
programs. To make the approach more widely applicable, we
intend to integrate additional abstract domains in ther&utu

2. Overview

In this section, we demonstrate our technique on a simpls-ill
trative example. The discussion in this section is mostigrmal,
additional formal details are provided in Section 4. Aduitl ex-
amples, inspired by real applications, are described iti@et.

2.1 Example Program

Consider the example shown in Fig. 1. In this example, the pro
gram executes three processes in paraligl]| 12| | T3. Different
interleavings of the statements executed by these practsstto
different values being assignedgd andy2. In every execution of

program. Each atomicity predicate represents a conteittisthat
can eliminate the invalid interleaving, and the disjunctiepre-
sents the fact that we can choose either one of these thréiento e
inate the invalid interleaving. For this program, there rmoeaddi-
tional constraints, and any satisfying assignment to tbistraint
yields a correct program. For example, adding an atomidasect
aroundz++ andz++ in T2 yields a correct program.

Since we can obtain multiple solutions, it is natural to defin
a quantitative criterion for choosing among them. Thisecigin
can be based on the number of atomic sections, their length, e
Our approach separates the process of identifying the spiace
solutions (generating the atomicity constraints) from pinecess
of choosing between the possible solutions, which can bedais
a quantitative criterion. In this example, each of the thpessible
solutions only requires a single atomic section of two stetets.

Next, we illustrate how AGS operates under abstractiorhib t
example, we use simple numerical domains: parity, inteneahd
octagon. In Section 7, we show refinement by increasing thefse
variables for which the abstraction tracks correlations.

parity yi parity parity
. 6 x \x .. 6 \/
y1 Tl x+=z Tl x+=z; 6 { “I T1 [x+—z,
6 X+=z 5 x+=z 5 * [x+=z 5(e
T2 z++ 4 | T2[z++; | T2 [z++; 4
5 z++; 3 i [z++; 4 | 1 [z++; 3
4 T3 yl1=fi T3 y1=fi T3 yl1=f
3 §2=x(X) 2 *ﬁ' il'z:x(x) 2 ***‘l‘] §2=><(X) 2 N
assert 1 # assert 1 # assert 16+P o
2 yi=y2 (ol | yu=yz (LT[TU) yl=y2
1 @ 01234 Vg 1234 © 01234
0123 4 y2 interval l interval l
() s x o v
X+=Z; Tl x+=z; ‘
X+=Z 5 X+=z 5 5
T2 z++ 4 N T2[z++; 4
Z++; 3 Z++; 3
T3 y1=f(x)) T3 y1=f(x) 5
y2=x y2=x
assert 1 assert 1
interval 6 x yli=y2 # yll=y2
TL xizz: 5) 01234 @ 01234
X+=z
[octagon octagon
T2 z+4; g o g l x g /
Z++,; Tl x+=z; 6 Tl x+=z; 6 i
T3 [y1=f(x) 2 x=z 5 w=z 5
y2=x 1 T2 z++; 4 o T2 z++; 4
assert 2+ 7+
yll=y2 3 ' 3 Mo e
01234 T3 yl=f(x) P T3[y1=f 5
y2=x y2=x
assert 1 ‘ assert 1
(1 yli=y2 yli=y2
® 01234 © 01234

Figure 2. (1) Values ofy1 andy?2 that arise in the program of Fig. @lf) Atomic section around the assignmentg/icandy2 under interval
abstraction(a-g) Possible steps of the AGS algorithm: on each step, the #igodan choose between refining the abstraction (down ayrows
and modifying the program by avoiding certain interleasiigght arrows).

2.3 Inferring Synchronization under Parity Abstraction

We first show how the algorithm works using the parity absioac
overyl andy2. The parity abstraction represents the actual value
of a variable by its parity, and only observes whether theiesal
is even or odd. Variablegl and y2 take abstract values from
{L, E, O, T}, with the standard meaning.

The starting point, parity abstraction of the original pag,
is shown in Fig. 2 (a). It shows the concrete valuesybfand
y2 that can arise during program execution, and their abstract
The concrete values are shown as full circles and are the aame
in Fig. 2 (I). Black circles denote the concrete values tladiss/
the assertion, and red circle values that violate the asseithe
shaded area denotes the concretization of the abstraetsvatum-
puted foryl andy2. The abstract values for botjil andy2 are
T. As a result, the concretization (the shaded area) coversrth
tire plane. In particular, it covers concrete values thatate the
assertion. Values that cannot arise in any concrete execafithe
program (false alarms) are shown as hollow red circles ifigiuee.

The AGS algorithm performs abstract interpretation of tre p
gram from Fig. 1 using parity abstraction. In Fig. 3 we showt pa
of the abstract transition system constructed by AGS. Fignl$
shows abstract states that can reach an error state. Eates stre
shown as dashed red line circles in the figure. The valuesrof va
ables in a state are shown as a tufle:, pcz, pcs, z, z, y1, y2),
where variableg/1 andy2 take an abstract value from the parity
domain. This transition system is very simple and in paliccon-
tains no cycles; however, this is only for illustrative posps and
the AGS algorithm handles all forms of abstract transitiggstems.

Under parity abstraction, there are several invalid ietarings.
The choice which of them to eliminate first is important, as- di
cussed in Section 5. The AGS algorithm first chooses to elimi-
nate the invalid interleavingr; ZH+; X+=Z; X+=Z; Z++;
y1=f(x); y2=x; assert. This interleaving is shown in Fig. 3
by emphasizing its edges (the right emphasized path in thesig

Under this interleaving, and under the parity abstractidn= T
andy2 = T (due to joins in the abstract transition system).

The AGS algorithm can now choose whether to try and elimi-
nate this by either adding atomicity, or by refining the adustion.
Fig. 2 shows these alternatives, which we explain in detaihe
rest of this section.

Eliminate 7, by atomicity constraint:To eliminate this interleav-
ing, the following constraint is generatgd:++, z++] . This step is
shown as the step from Fig. 2 (a) to Fig. 2 (b). Note that the pro
gram in Fig. 2 (b) has an atomic section around the statements
andz++ in T2. This limits the concrete values that andy2 can
take, as shown by the full circles in Fig. 2 (b), compared tsth
on Fig. 2 (a). In particular, it eliminates the error statevimch y1
andy2 both have the valug (no red full circle in the figure).

However, parity abstraction is not yet precise enough tdyer
the correctness of the resulting program, as shown by thadesha
area in Fig. 2 (b). During abstract interpretation of thegpamn,y1
takes both the valueB andO, and thus goes t6. The concretiza-
tion (the shared area) therefore spans all possible cancadties
of y1. The abstract value of2 remainsE, therefore the concretiza-
tion (the shaded area) only contains even valueRoT he abstract
values represent three points that violate the assertimwrs as
hollow red circles in Fig. 2 (b).

After eliminating w1 by adding the constraintz++, z++],
the following (abstract) interleaving may violate the atea:
Mo = X+=z; z++, z++; x+=2;y1=f (x); y2=x; assert. This
interleaving yields the abstract valugs = T andy2 = T (due
to joins), which may violate the assertion. The interlegvin is
shown in Fig. 3 as the left emphasized path in the figure.

Eliminate > by atomicity constraint:To eliminate this interleav-
ing, the following constraint is generatddc+=z, x+=z] . This step

is shown as the step from Fig. 2 (b) to Fig. 2 (c). The resulting
overall constraint isf x+=z, x+=z] A[z++, z++]

Figure 3. Partial abstract transition system for the program of
Fig. 1. Only abstract states that can reach an error stathaven.

With this atomicity constraint, under the parity abstrawti
there are no further invalid interleavings. This constrasnsat-
isfied by a program that has the statementsz andx+=z of T1
execute atomically, and the statements andz++ of T2 execute
atomically. In this program, the abstract values ate= O and

y2 = E. These abstract values guarantee that the assertion is no

violated, as shown in Fig. 2 (c).

Eliminate 7w by abstraction refinementAfter eliminating the
interleaving 71, all remaining concrete interleavings satisfy the
assertion, but we could not prove it under parity abstractiostead

of eliminating interleavingr2 by adding atomicity constraints, as
described above, we can choose to refine the abstractiorpfdty

to interval, moving from Fig. 2 (b) to Fig. 2 (e). Interval afation

is precise enough to prove this program.

2.4 Inferring Synchronization under Interval Abstraction

Instead of eliminating interleaving; by adding an atomicity con-
straint, the algorithm can choose to try and eliminatéy refining
the abstraction from parity to interval. This corresporathe step
from Fig. 2 (a) to Fig. 2 (d). Under interval abstraction, #testract
values are/1 = [3, 6] andy2 = [0, 4], representing two points that
may violate the assertion, as shown in figure Fig. 2 (d).

The algorithm can again choose to eliminate invalid intarie
ings by adding an atomicity constraint (step from Fig. 2 @) t
Fig. 2 (e)) or by abstraction refinement (step from Fig. 2 (@) t
Fig. 2 (f)). In the former case, AGS produces the overall tais:

([x+=z, x+=z] V[z++, z++])
A ([yl=f(x),y2=x] V[x+=z, x+=2] V[z++, z+4])

This constraint requires only one dfl and T2 to execute
atomically. Fig. 2 (e) shows a program corresponding to drilbeo
solutions, in whichr2 is atomic.

As apparent from the constraint aboyg1=f (x) , y2=x] is not
sufficient for showing the correctness of the program unideiin-
terval abstraction. The result of applying interval albdticm to the
program implemented from this constraint is shown in FigI2 (

2.5 Inferring Synchronization under Octagon Abstraction

Finally, the octagon abstract domain [18], maintains ehaafpr-
mation to only require atomicity as in the case with full infaa-
tion. In particular, it is sufficient to makgl=f (x) andy2=x ex-
ecute atomically for the program to be successfully veritiader
Octagon abstraction, as shown in Fig. 2 (g).

3. Preliminaries

Transition System A transition systents is a tuple(3, T, Init)
whereX is a set of stateg, C ¥ x X is a set of transitions between
states, andhit C X are the initial states. For a transitiore T', we
usesrc(t) to denote the source statetofanddst(t) to denote its
destination state.

For a transition systenis, a tracer is a (possibly infinite)
sequence of transitionso, w1, ... such that for everyi > 0,
m; € Tanddst(mi—1) = src(m;). For a finite tracer, |7| denotes
its length (number of transitions). We user to denote the trace
created by concatenation of a transitiorand a tracer, when
dst(t) = sre(mo).

A complete tracer is a trace that starts from an initial state:
sre(mo) € Init. We use[ts] to denote the (prefix-closed) set of
complete traces of transition system

Program Syntax We consider programs written in a simple pro-
gramming language with assignment, non-deterministiciceho
conditional goto, sequential composition, parallel cosifon,
and atomic sections. The language forbids dynamic allocadf
threads, nested atomic sections, and parallel compositiside
an atomic section. Note that a program can be staticallycatsad
with the maximal number of threads it may create in any exeut
Assignments and conditional goto statements are exectoeau-a
cally. All statements have unique labels. For a programl lghee
usestm{() to denote the unique statement at label

We useVar to denote the set of (shared) program variables. To
simplify the exposition, we do not include local variablesdefi-
nitions, although we do use local variables in examplesrd e
nothing in our approach that prevents us from using locahbtas,
but having local variables makes the formal definitions cemb
some. We assume that all program variables have integeesalu
initialized to0.

Program Semantics Let P be a program with variablégar. Let
k be the maximal number of threads i with thread identifiers
1,..., k. A states is a triplet (vals, pcs) wherevals: Var — Int
is a valuation of the variables, an@.: {1,...,k} — Intis the
program counter of each thread, which ranges over prograetsa
in the code executed by the thread.

We define a transition system for a prografm to be
(Xp,Tp,Initp), where transitionsTp are labeled by program
statements. For a transition € Tp, we usestmi{t) to denote
the corresponding statement. We usKt) and t¢id(t) to denote
(unique) program label and thread identifier that corredptmn
stm{t), respectively.

A transitiont is in Tp if all of the following conditions hold:

(a) the program counter of the thread(¢) in statesrc(t) is at
program labeldl(t),

(b) the execution of the statemestmi{t) from statesrc(t¢) by
threadtid(t) results in statelst(¢),

(c) no other thread is inside an atomic section in statgt).

We use] P] to denote the set of traces Bf i.e.,[P] = [ts] where

ts = <2P,TP, |nitp>.

Abstraction Our method is based on abstract interpretation [10].
In this section, we quickly review relevant terminologytthall be
used throughout the paper.

An abstract domain is a complete join semilattice =
(A,C, U, 1), i.e., a setd equipped with partial order, such that
for every subseX of A, A contains a least upper bound (or join),
denoted JX. The bottom element. € A is LI (). We user LIy as
a shorthand forl{z, y}.

In this paper, we assume that the abstract domiais a pow-
erset of abstract states, with (partially) disjunctivenjgdhn abstract
states is ranging over an abstract domdh= (B,Cp, Ug, LB).

For X C Xp, the abstraction function is defined by (X) £
L{B(s) | s € X}, whereg is the abstraction function for the un-
derlying domain of abstract states. For a giygrthe abstractiom
can vary anywhere on the range between “relational” andiéear
sian”, depending on the definition of join.

An abstract transformer for a program statemenis denoted
by [st]a: A — A. Fora € A, the abstract transformer is defined
pointwise:[st]« (a) £ L{[st]s(c) | o € a}, where[st]s is the
abstract transformer for the underlying domain of abststates.

We abuse the notation slightly and useo collectively name
all the components of an abstract interpreter: its absttastain,
including the underlying domain of abstract states, abstrans-
formers, and widening operator, if defined.

We define an abstract transition system fdrand « to be
(=%, T4, Init%,), wherelnit’, = a(Initp), and a transitiorio, o)
labeled by a program statemest is in T§3 if and only if
[stls(o) C o'

We use[P]. to denote the set of abstract tracesrfi.e.,
[P]a = [ts] wherets is the abstract transition system fBrand
«, in which E”P is the result of abstract interpretation, i.e., the set
of abstract states at fixed point.

Specification The user can specify a state propefy which
describes a set of program states. This property can refeogmam
variables and to the program counter of each thread (e.mottel
local assertions). Our approach can be extended to hangle an
temporal safety specifications, expressed as a propeiynation,

by computing the synchronous product of program’s tramsiti
system and the property automaton [9].

Given a (concrete or abstract) stateve uses = S to denote
that the state satisfies the specificatiofl. We lift it to traces as
follows. A tracer satisfiesS, denoted byr = S, if and only if
sre(mo) = S andforalli > 0, dst(m;) |= S. A setll of (concrete
or abstract) traces satisfi§s denoted byl = S if and only if all
traces in it satisfys.

4. Computing a Safe Schedule Under Abstraction

Algorithm 1 provides a declarative description of absict
guided synthesis. The algorithm takes an input program,ea-sp
ification, and an abstraction, and produces a (possibly fieddli
program that satisfies the specification.

The main loop of the algorithm selects an abstract tracd#
the programP such thatr satisfies the atomicity formul@, but
does not satisfy the specificatigh Then, the algorithm attempts
to eliminate this invalid interleaving by either:

e adding atomicity constraints: the procedareoi d generates
atomicity constraints that disabte The constraints generated
by avoi d for 7 are accumulated by AGS in the formyta

e refining the abstraction: using a standard abstractionemefamt
approach (e.g., [3, 8]) to refine the abstraction.

On every iteration, the loop condition takes into accouet tip-
datedy anda when choosing an invalid interleaving

Some of the (abstract) invalid interleavings may correspion
concrete invalid interleavings, while others may be actgaf the
abstraction. The choice of whether to eliminate an inteitea
via abstraction refinement, or by adding atomic sectioniefisas
non-deterministic choice (denoted byin the algorithm). In this
section, we assume that it makes the right choices (for elamp
only picks refinement when it is indeed possible to eliminate
using refinement). In Section 5, we discuss how to implentent i

When all invalid interleavings have been eliminated, AGlBsca
the procedure npl enent to find a solution for the constraints
accumulated inp.

Algorithm 1: Abstraction-Guided Synthesis.

Input: ProgramP, SpecificationS, Abstractiona
Output: Program satisfying undera

1 ¢ =true

2 while truedo

3 | I={r|re[Planlelm S}
4 if IT is emptythen return i npl enent (P,¢)
5 m = select trace fronil

6 if shouldAvoid(m, o) then

7 1 = avoi d(m)

8 if 1 # falsethenyp = A9

9 else abort

10 else

11 o =refine(a,m)

12 if o' # athena = o’

13 else abort

14 end

15 end

Function avoi d(«)

Input: Tracer

Output: Atomicity constraint for avoidingr

p = false

foreachi =0,..., || do

if existsj > ¢ + 1 such thattid(r;) = tid(n;) and
for all I such thati < I < j, tid(m;) # tid(m;)
then p = p Vv [Ibi(7;), Ibl(7;)]

end
return p

Functioni npl enment (P, p)

Input: ProgramP, atomicity formulap

Output: Program with atomic sections satisfying
Find a minimal satisfying assignmefit= ¢

P’ = P with adding atomic sections imtomize(T)
return P’

4.1 Generating Atomicity Constraints

The procedurewvoi d takes a tracer as input, and generates an
atomicity constraint that describes all context switches i and
thus describes all possible ways to eliminat®y adding atomic
sections to the original program.

The atomicity constraint generated byoi d is a disjunction
of atomicity predicates. An atomicity predicate requitestta pair
of consecutive program statements execute atomicalljjowttin-
terleaving execution of other threads between them.

Formally, given a progran®, and a pair of program labels&nd
I', we us€]l,!'] to denote ammtomicity predicateln our examples,
we write [stm{l), stm{!")] instead of{l, I']. An atomicity formula
is a conjunction of disjunctions of atomicity predicates.

Let 7 be a trace in a (concrete or abstract) transition system of
P. We say thatr satisfieql, '], denoted byr = [1,1'], if and only
if for all 0 < 4, if (bl(t;) = landi + 1 < |«|, thenlbl(t;r1) =1
andtid(ti) = tid(ti+1).

A set of tracedT satisfies an atomicity predicate denoted by
IT = p, if and only if all the traces il satisfyp. Similarly, we
interpret conjunctions and disjunctions of atomicity peates as
intersection and union of sets of traces. The set of tracas#tisfy
an atomicity formulap is denoted byj].

The proceduravoi d only generates atomicity predicates for
neighboring locations (locations that appear in the sameath
where one location immediately follows the other), with thii-
itive meaning that no operation is allowed to interleaveveen the
execution of these neighboring locations.

The algorithm identifies all context switches7ras follows. A
context switch after transitiom; occurs if there is another transition
m; by the same thread later in the trace, but not immediatedr aft
m;. Then, if the transitiorr; is the first such transition after;, we
generate the atomicity predicgtél (), [bl(;)].

In the case of an invalid sequential interleaving, an ietaring
in which each thread runs to completion before it contextedves
to another thread, it is (obviously) impossible to avoid ifer-
leaving by adding atomic sections. In such casesyi d returns
false and AGS aborts.

4.2

The procedure npl ement takes a progran® and an atomicity
formulap as input. An atomicity formula can be seen as a formula
in propositional-logic, where the atomicity predicates eated as
propositional (boolean) variables. Note that the atomifitmula

is in positive CNF, and thus it is always satisfiable.

The procedure constructs a progrdeh by finding a minimal
satisfying assignment fap, i.e., a satisfying assignment with the
smallest number of propositional variables setrt@. The atom-
icity predicates assigned to true in that assignment areithple-
mented as atomic sections in the program.

Our approach separates the characterization of validigo&it
from their implementation. The atomicity formufamaintained in
the algorithm provides a symbolic description of possibletsons.

In this paper, we choose to realize these by changing thegrog
and adding atomic sections. However, these could be realiziag
other synchronization mechanisms, as well as by contrplie
scheduler of the runtime environment (if such schedulestgki

In general, there could be multiple satisfying assignmémnts
, corresponding to different additions of atomic sectiomghte
input programP. Usually, we are interested in minimal satisfying
assignments, as they represent solutions that do not intpdse-
dant atomic sections.

To realize a satisfying assignmelit= ¢ as atomic sections,
we defineatomize(I") to extract the minimal (contiguous) atomic
sections from the assignment. Towards this end, we condtrac
set of program labels in which context switches are not permi
ted byl L = {I' | [I,I'] € T'}. For every maximally-connected
component of_ in the control-flow-graph of the original program,
we find the immediate dominator and postdominator, and aeld (b
gin and end) atomic section at these labels, respectivalig. May
cause extra statements included in an atomic section, redtimg
additional interleavings. This situation is sometimesvaidable
when implementing atomicity constraints using atomicisest

It is possible that implementing an assignméhtresults in
eliminating additional interleavings even when there aveertra
statements in the atomic section. Consider the examplegof4Fi
In this exampleT2 cannot interleave with the first iteration of the
loop in T1. But once the first iteration is over, it can interleave
with any other iteration. However, since we require implatagon
via atomic sections, the only implementable solution isdd an
atomic section around the statemexts- andx++ inside the loop,
forcing every iteration of the loop to be executed atomycall

Implementing Atomicity Constraints

4.3 Abstraction Refinement

The procedure ef i ne takes an interleaving as input and at-
tempts to refine the abstraction in order to aveid~or that to be
possible, has to be an artifact of the abstraction, and not cor-
respond to a concrete invalid interleaving. AGS tries toneethe
abstraction by calling ef i ne, but if the abstraction cannot be re-
fined, and ef i ne returns the same abstraction, AGS aborts.

In this paper, we focus on the procedure for restrictinglidva
interleavings, and can leverage any standard refinemeeirsch
(e.g., [3, 4, 8, 22]). In the examples, we use two kinds of &mp
refinements: one that moves to another abstract domaing¢8>
and one that varies the set of variables that are abstraeiibn-
ally (Section 7).

4.4 Choosing Interleavingr to Eliminate

Since our program modifications consist of adding atomitices,
we cannot eliminate sequential executions (which have ntegb
switches). Itis therefore required that we can verify theatiness
of the sequential runs of the program under the given aligirac

In fact, for verifying the correctness of interleavingsttimeolve
fewer context-switches, less precise abstractions canffieient.

Generally, itis natural to consider interleavings in arréasing
order of the number of context switches. Atomicity constsi
obtained for interleavings with a lower number of contexitshes
restrict the space that needs to be explored for interlgawvith
higher number of context switches.

4.5 Program Modification vs. Abstraction Refinement

When an invalid interleavingr is detected, a choice has to be
made between refining the abstraction and adding an atgmicit
constraint that eliminates. This choice is denoted by the condition
shouldAvoid(r, «) in the algorithm. Apart from clear boundary
conditions outlined below, this choice depends on the qaer
abstractions with which the algorithm is used.

Whenr is a sequential interleaving, amdoi d is realized as
the addition of atomic sections, it is impossible to add asityn
constraints to avoidr. Therefore, in this case, the only choice
is to refine the abstraction (if possible). Hence, the caomlit
shouldAvoid(r, «) is set to returnfalse whenr is a sequential
interleaving.

Similarly, depending on the refinement framework used, i ma
be impossible to further refine the abstractio-or example, when
using a fixed sequence of abstraction with increasing poecigas
in Section 2), upon reaching the most precise abstractitimeise-
quence, there’s no way to further refine the abstractionrefbee,
in this case, the only choice is trying to avoid the interlegvr, and
the conditionshould Avoid(r, o) returnstrue when it is known a
priori thata cannot be refined anymore.

For refinement schemes that use symbolic backwards execu-
tion to find a concrete counterexample (e.g., [3, 8]), thed@tanm
shouldAvoid(r,) can be based on the result of the symbolic exe-
cution. When the refinement scheme is able to find a concrete co
terexample,shouldAvoid(m, a) can choose to repair, using the
concrete counterexample as basis. If the refinement schaifae f
to find a concrete counterexample, but also fails to find aispur
ous path for abstraction refinemestould Avoid(w, o)) can again
choose to repair, as refinement cannot be applied.

Attempting verification with a refined abstraction may failed
to state explosion. In most cases there is no way to checlufir s
failure a priori in the conditioshould Avoid(r, o). Practically, it
is useful to invoke the verification procedure as a sepaaate and
implement a backtracking mechanism for the refinement ween v
ification fails to terminate after a certain time. Backtriackthe re-
finement may enable successful verification of a more cdnstla
variant of the program.

T1 { T2 {

while (*) { if (x==1) {
X++ assert false
X++ }

} }

}

Figure 4. Limitations of implementability. Correctness only re-
quires the first iteration of the loop ifil be executed atomically.
Implementability forces every iteration to be executedratally.

5. Abstraction Guided Synthesis

In the previous section, we described the AGS algorithm in a
declarative manner, and omitted some details that we noweasid
e how do we computéP].,?
¢ how do we obtain an interleaving € [P]a N [¢] andrw = S?
e how do we choose, on every step of the algorithm, whether to
add atomicity constraints or to refine the abstraction?
To realize Algorithm 1, we first use standard abstract imttep
tion to compute the set of abstract staits reachable fromnit?,
under abstraction. Then, we explore the invalid interleavings and
eliminate them. The algorithm is amenable to several ogami
tions, and we describe them later in this section.
In the pseudocode of Algorithm 1, we replace the declarative
expression in Line 3 with a call to functiofr aces:

II=Tr aces(lnitig7 Badig7 253, ®)

in Algorithm 1, whereBad”P is the set of reachable error states:
{cexh o} S}

Function Traces(X, Y, V, ¢)

Input: Set of abstract stateX, Y, V', Atomicity Formulag
Output: Set of traces fronX to Y passing inV/, satisfyinge
workset = {t | src(t) € V\ X,dst(t) € Y}
result = {t | src(t) € X,dst(t) € Y}
while workset is not emptydo
« = select and remove interleaving franvorkset
foreach Statementt and states € V' such that
[stlg(o) Cp sre(mo) do
t = transition(o, src(mo)) labeled withst
=t
if 7/ = p andr’ is acyclicthen
if o € X thenresult = result U {r’'}
elseworkset = workset U {r’}
end
end

end
return result

The functionTraces(X,Y,V,¢) enumerates all traces that
start in a state inX C V, end in a state i C V, go only
through states il¥” and satisfy the atomicity constraigt It works
by performing a backward exploration starting from state¥’i
and extending interleaving suffixes backwards. A suffix isher
extended only as long as it satisfigs Thus, the algorithm lever-
ages the constraints that are already accumulated in tha&city
formulay to prune the interleavings that have to be explored. The
use ofy is critical for the practicality of the approach, as shown
experimentally in Section 7.

Exploring ¢-enabled statementsWe say that statemenst is -
enabled in state- when executingt from o does not contradicp.
Formally, given a set of stat&s, the conditiorenabl ed(st, o, ¢, V)
holds if and only if for every pair of transitionsandt’ such that
sre(t) € V,dst(t') € V,dst(t) = src(t’) = o € V and
stmt(t") st, the partial trace t.t' satisfies ¢.

For example, ify is [a, c] thenst is not - Qg bo
enabled inv, in the partial state space shown on O™
the right. However, ifpis[a, c] V[b, c], then d 5
st is p-enabled iro.

Algorithm 2 : Abstraction-Guided Synthesis.
Input: ProgramP, SpecificationS, Abstractiona
Output: Program satisfying undera

1 states = workset = Initaz.

2 p =true

3 while workset is not emptydo

4 o = select and remove state frovorkset

5 foreach Statementt do

6 if enabl ed(st, o, ¢, states) then

7 o' = [st]g(0)

8 if o/ = Sthen

9 select

meTr aces(lnithp, {0'}, states\workset,)

10 if shouldAvoid(m, a) then

11 Y = avoid(m)

12 if 1) # false then

13 =AY

14 states = workset = Inita3
15 disabled = ()

16 else abort

17 else

18 | Mrefine(r)

19 end
20 else
21 if {0’} [Z states then
22 states = states U {o’}
23 X ={o0” € states | ' Cp o'}
24 workset = workset LI X
25 end
26 end
27 end
28 end
29 end
30 return i mpl enment (P,p)

Forward Pruning usinge Algorithm 2 is an optimized version
of Algorithm 1. In the optimized algorithm, we focus on thepkx
ration code, and on the code for avoiding an interleavingékill-
16), the code for refinement is similar and is abbreviateddora-
ment in Line 18. The algorithm combines (forward) abstrattr-
pretation of the program, with (backward) exploration afilid in-
terleavings. The main idea of the algorithm is to use the tcaimés
accumulated inp to restrict the space that has to be explored both
forward and backward. In particular, this optimization iaéocon-
structing the entire (unrestricted) transition systenraf

The abstract interpretation part of the algorithm is stasdend
uses a workset to maintain abstract states that should beredp
Once the workset is empty we know a fixed point is reached.

At every point, forward exploration of new states is resettchy
the current constraints accumulateddiiLine 6). For every invalid
interleavingm, the formulay represents all the possible ways to
eliminate . This means that the algorithm only restricts further
exploration when the next exploration step contradidtpossible
waysto eliminate existing invalid interleavings.

In the algorithm, we use the join operator of the abstract do-
main to add new states to the setites of explored abstract states
(Line 24). More generally, the algorithm can use a widenipg o
erator [10] when required. To determine whether a stateldHm
added to the set of states, we check whether the state islnlrea
represented intates (Line 21).

Rebuilding Parts of the Transition SystemInstead of rebuild-
ing the whole transition system whenever we add a consttaint
o (Line 14), or whenever we refine the abstraction, we can kebui
only the parts of the transition system that depend on thefioad
tion. Following approaches such as [13], we can invalidatg the
parts of the abstract transition system that may be affduyettie
refinement, and avoid recomputation of other parts.

Lazy Abstraction Algorithm 2 need not maintain the same ab-
straction across different interleavings. The algoritham de
adapted to use lazy abstraction refinement as in [13]. ldsbéa
maintaining a single homogenous abstractiofor the entire pro-
gram, we can maintain different abstractions for diffenestts of
the program, and perform lazy refinement.

Simplification of ¢ Rather than taking the conjunction of con-
straints as they are accumulatedgdnwe preform (propositional)

simplification of ¢ on-the-fly. This is required in practice, as the
number of terms added tomay be large even for small programs.

Multiple Solutions The algorithm as described here only yields
a single minimal solution. In practice (and in our implenatiun,
described in Section 7), it is often desirable to presentigiee with

a range of possible solutions and let the user make her owinecho

6. Correctness and Minimality

In this section, we show that Algorithm 1 computes a correct
program with smallest atomic sections, assuming the attigira

is fixed. At the end, we discuss the effect of abstraction eefient,
and correctness of Algorithm 2.

6.1 Correctness

In this section, we assume that the abstraction is fixed, i.e.
shouldAvoid in Algorithm 1 always returngrue. The follow-

ing theorem says that a run of the AGS algorithm terminaték wi
either an abort or a valid program.

THEOREM®6.1 (Correctness)A run of the AGS algorithm termi-

nates with either an abort or returns a prograR{ such that

(1) P’ satisfiesS underq, i.e.,[P']« = S, and

(2) P’ admits a subset of interleavings of the original progrém
i.e,[P']a C [Pla-

Sketch of Proofin every iteration, the AGS algorithm eliminates

at least one simple path to error state from the abstracsitiam

system. As a result, the abstract transition system may loffiexh

to take into account the updated atomicity formuldHowever, the

abstract transition system is always modified in a way thasdwt

introduce any new paths, in particular it has no new pathsrto e

states.

Because the number of simple paths is finite whiel e loop in
the AGS algorithm terminates either by eliminating all sienpaths
to error, or finding a path to error that has no context swiced
thus it cannot be eliminated by our method. In the latter ctmee
algorithm aborts. In the former case, the set of trddds empty.
That is, any execution aP that respects the atomicity formuja
satisfiesS under the abstraction. Let P’ be the program returned
by i npl ement (P,) in this case. The interleavings @’ is a
subset of those aP permitted by, undera: [P']o C [Pla N [e]-
Therefore, P’ satisfiesS undera and AGS algorithm returns”.

The AGS algorithm cannot fix a program whose sequential
executions do not satisf§ undera. Otherwise, if there is a way
to add atomic sections t8 such that the result satisfi€sundera,
then there exists a run of the AGS algorithm that does not zénod
computes a result. In the worst case, it makes the programyalw
execute sequentially.

T1 {
0: if (y==0)
goto L
1: x++
2: L
}
T2 {
0: y=2
1: x+=1
2: assert xz#y
}
@ (b)

Figure 5. Example demonstrating the effect of join and the choice
of different abstract traces to eliminate.

THEOREM®6.2. If the sequential executions BfsatisfyS underq,
then there exists a run of AGS algorithm that does not abort.

In Algorithm 2, at Line 9, we always choose fromaces a trace
« that has context switches, if there is one. It guarantegsithaun
of AGS algorithm aborts if the sequential versionffs valid.

The toy example in Fig. 5(a) has a single invalid interlegvin
y=2;i f (y==0); x++; x+=1; asser t, as shown on Fig. 5(b). How-
ever, under parity abstraction, there are two invalid ietarings,
due to join (shaded area). One of them is the abstractioneof th
concrete invalid interleaving, denoted hy. The other one is a se-
quential interleaving, denoted hy,, in which T1 executes first,
and thenr2. If the AGS algorithm first chooses to eliminate, it
will abort, because there are no context switches to dis&tmer-
ever, if we choser; first,avoi d will return the atomicity constraint
[y=2, x+=1], and the program will be successfully verified under
this constraint, using parity abstraction. Similarly, veemconstruct
an example in which a wrong choice leads to larger atomidemect
than necessary.

6.2 Minimality

Next, we define the notion of a minimally-atomic program, and
show how to use the AGS algorithm to compute all minimally-
atomic programs for a given input program, specification alnd
straction.

LetI" be a set of atomic predicates that refer to a progfam
In AGS algorithm, we obtaif” as a satisfying assignment to the
atomicity formulap. Recall from Section 4.2 that there is a unique
way to realizel” by adding atomic sections 8. Let us denote the
resulting program by |r.

Let P’ be obtained fromP by adding atomic sections. We
useT'(P, P') to denote the (unique) set of atomic predicates that
corresponds to these atomic sections.

Minimally Atomic Programs A valid program is minimally-
atomic when removing or shrinking any atomic section in ikes
it invalid.

DEFINITION 6.3 (Minimally Atomic). Consider a program P
and an abstractionv. Let P’ be a program obtained fron® by
adding atomic sections?’ is minimally-atomic with respect ta
if and only if [P']. = S and for every programP” obtained
from P by adding atomic sections, if(P, P”) c T'(P, P’), then
[P"]a = S.

The conditionI'(P, P") C I'(P, P') means that the atomic sec-
tions of P” is a (strict) subset of those &t'.

We useMA(P,) to denote the set of all minimally-atomic
programs with respect te that can be obtained from.

The programs irMA(P, «) have incomparable sets of atomic
sections, i.e., for every paiP’, P” € MA(P,a), I'(P,P') ¢
(P, P"). However, they may have the same set of traces under
(and even concrete traces). When the abstractids not precise
enough to prove that all sequential executionsPofsatisfy S,
MA(P, «) is empty. In the rest of this section, we show that every
minimally-atomic program can be implemented by AGS aldonit

THEOREM®6.4 (Minimality). For every minimally-atomic pro-
gram P’ € MA(P,«), there exists a run of the AGS algorithm
that returnsP’.
Sketch of ProofLet P’ € MA(P,«) and letl’ = T'(P, P). We
show thafl” is a satisfying assignment to computed in some run
of AGS algorithm, i.e., for some sequence of invalid intaviegs
picked by AGS to be eliminated.

LetT be a maximal subset df such thatP |# P’. Because
P’ is a minimally-atomic program w.r.ty, [P |]« & S. There
exists an atomicity predicagesuch thaf P |r/ug1]a = S. Thus,
there is an invalid interleaving in [P |r/]. that is eliminated by
p. Note that the atomicity predicateslin, (I" U {p}) are the result
of atoni ze. Thatis,P’ = P |r= P |r/uqy), becauseP’ is the
result ofi npl ement (P,) which choose$” U{p} as the minimal
assignment it implements.

Assume that the invalid interleavingis picked by AGS in the
last iteration. Atomicity constrainp generated byvoi d(=) will

includep as one of its disjuncts. Suppose that there exist a run of

AGS that produces’ such thafl” is a minimal satisfying assign-
ment fory’. Then,I'" U {p} is a minimal satisfying assignment to
© = ¢ A andyp is produced in the last iteration of AGS.

Similarly, we can continue subtracting atomicity predésat
from I/, constructing the sequence of invalid interleavings back-
wards, until we run out of atomicity predicates.

The following proposition is much stronger than Theorem 6.4
as it requires that a single run of the AGS algorithm yield all
minimally-atomic programs. Moreover, the minimally-atorpro-
grams exactly correspond to all minimal satisfying assignts of
the atomicity formulap computed by that run.

PrRoOPOSITIONG.5 (Minimality-Strong).If the sequential execu-
tions of P satisfy.S under «, then there exists a run of the AGS
algorithm that yields atomicity formula such that
e for every minimal satisfying assignmeatto ¢, the program
i mpl ement (P, A) € MA(P,),
o for every P’ € MA(P,«), there exists a minimal satisfying
assignment for ¢, such that npl ement (P, A) returns P’.

Correctness and Minimality of Algorithm 2 Correctness of the
operational version of the AGS algorithm, given in Algonti2,
follows from the fact that an invalid interleaving elimieatby Al-
gorithm 2 from a partial transition system is also an invaditkr-
leaving that can be chosen by an iteration of Algorithm 1 fittin
corresponding full transition system. Minimality folloviom the
fact that the order of (forward) exploration in Algorithm arcbe
chosen to discover error states in a way that exhibits anyeseg
of minimal invalid interleavings.

Abstraction Refinement If refinement is not guaranteed to termi-
nate, then AGS algorithm is not guaranteed to terminate.réae
son is that every refinement step may produce new simpleidnval
interleavings. When the refinement is guaranteed to be roniot
i.e., abstraction is more precise in every step (e.g.,\p#oitnter-
vals is not monotonic), we can attain minimality under adostion
refinement, by discarding the atomicity constraiptafter each re-
finement step. When the refinement is not monotonic, we canelefi
a minimally-atomic program to respect any of the explorestrate-

Program Refinement Steps | Avoid Steps
Double Buffering | 1 2
Defragmentation | 1 8
3D Update 2 23
[Array Removal [1 [17 |
[Array Init |1 | 56 |

Table 1. Experimental Results.

tions. In the case of lazy abstraction, which refines only paihe
state-space, the definition of minimality is even more iaedl

Finding a minimally-atomic program requires backtrackamgl
itis at least exponential in the size of the abstract tramsiystem
of the input program, inline with the known complexity bosnd
for game-based synthesis [14]. Thus, it is more valuableest
into a good heuristic. The simple heuristics that we useen®6S
algorithm produce reasonable, and often minimal, synéhabion
in practice, as we show in the next section.

7. Experience

We built a prototype tool nameduarpIAN based on the AGS algo-
rithm of Section 5. We applieGuarpiaN to several interesting pro-
grams, inspired by real applications, which we describe.riExe
abstractions we used are variants of parity and intervalaitasn
where the abstractions differ in what variables are kepticial.

Table 1 summarizes our experimental results. Note thatfall o
our example programs are infinite state, and hence requsteaab
tion for full verification. In our experiments, we were ingsted in
exploring the space of fixes under several abstractionsy &ben
GuarDIAN found a solution with the original abstraction, we still
let it explore solutions with finer abstractions. For everggram
in the table, we report the number of refinement steps, andaum
of avoi d steps performed by the algorithm. In Table 2, we report
the atomicity constraints found byuarbpian for programs whose
code is shown in the paper (atomicity constraints referecctide).

When usinge-pruning, all experiments ran in less than
minutes. Without usingp to restrict exploration, most programs
went out of memory exploring a hopelessly large (and redot)da
space of interleavings. To enumerate minimal assignmenthé
atomicity constraints constructed by our algoritf®oarDIAN USeS
amodel enumerator [1]. In the rest of this section, we dbsgome
of our examples in more detail.

7.1 Abstract Domain

In our examples, the abstract domain is a powerset of abstrac
states. An abstract stateis a tuple(val?, pcs), whereval® maps
program variables to their abstract values, ranging ovexbaitract
domain such as parity, sign or interval.

For X C X p, the abstraction function is defined as follows:

a(X) EU{(f(vals),pes) | s € X}
wheref maps concrete values of program variables to their abstract
values. We use! g andCy to denote the join and order of abstract
values. The values of program counters are preserved.

We use the following join and partial order, parametric oa th
variables tracked relationally. L&t C Var be a subset of variables.
The joinU for the abstract domair is defined using a relational
join over a subset of variables I and cartesian join over the rest
of the variables:

if pcs, # pes, OF

{s1,82}
existsv € V s.t.wal?, (v) # val’, (v)
{(val?, Ugwall,,pcs,)} otherwise

def
s1 52 =

For V' = Var this defines relational join. Fdr = (this defines
cartesian join. Most of our examples vary the abstractioveying

Program | Abstraction (set of tracked variablesV) Solution (atomicity constraints)
DBuffer 0 [fillT:L1,fill:L2])V ([render:L1,render:L2]
Fill, Render} true
Defrag Barrier, Region, F'1, F2,empty} [D:L1,D: L2] A[U: LT, U L2] AU L2, U: L3] A[U: L3, U L4]
Barrier, Region, F1, F2 empty, i, j} [DLI, D L2] ATU LT, U L2]
3D update| {z2, 3,3, 21,23} [P1: L2, P1: L3] A[P2: L2, P2: L3] A[PI1: L8, P1: L9]
x2,x3,y3, 21, 23,42, 22} [P1: L2, P1:L3] A[P2: L2, P2:L3])
x2,x3,y3, 21, 23,y2, 22, x1,y1} true
Table 2. Abstraction and solutions for some of the example programs
:2; Elelnlder: i; o render () { 7.3 Concurrent Defragmentation
inti =j =0; t; ! fwﬁjit:([\DnT {Render] (1) This example is inspired by the problem of defragmentatider.
filrQ) { L3 | += 1; " fragmentation algorithms are used in various storage neanagt
'[% ' | 511' Fi<| :\?[i{] = read(); L4: goto LI1; scenarios (e.g., memory, disk storage) to increase spgizatian.
L3: i += 1 ' } In many cases, defragmentation takes place concurrentty ami
L4: goto LI; 5 j = o executing application.

oo L6: goto 1: In Fig. 7, we show a simplified system where one process
tg; E;'nldei:l' 1) called Def ragnent performs memory compaction concurrently
L7: i = 0: ' main() {) with another process calledodat e which allocates new entries
L8: goto LI; }f' 1O I1 render(); in memory. The memory is organized as an array of entriegdall

} Pages. The size of the arrayV is unknown a-priori. Each entry

Figure 6. Double Buffering

the relationality in the join. Because the join is parantetm the
setV/, in the presentation of our examples, we only vary the value
of V. The value ofl/ for each example is shown in Table 2. The
partial orderC on A is defined as follows: for all, Y’ C A,

Y C Y'ifand only if for all s; € Y there exists, € Y’ such that
DCs; = DCsy, andvali1 Cy valEQ.

7.2 Double Buffering

This example is motivated by the mechanism of double burteri
Variants of this mechanism are used in a variety of settifigm
computer graphics to device drivers. This scheme is ilitistt in
Fig. 6. There are two buffers of imagdsf) of length N. The filler
process fills the buffer indexed by the variabid | , while at the
same time the rendering process consumes the buffer indsxed
variableRender . When the filling completes, the values of the two
variables are swaped and the filling restarts. The renderiocess
simply renders the image indexed by variaBnder . To avoid
clutter, we assume that rendering is at least twice as fdfiiting
and hence befor8ender is changed, the value of its buffer has
been written to the screen at least once (writing to the scige
idempotent and hence can be repeated).

Specification:We would like to prove that the filler and renderer
processes never access the same location simultanecushalky:

pe(fill) = L2 A pe(render) = L2 = —(Fill = Render Ai = j)

Result:Our first solution is obtained with a cartesian parity alustra
tion. This abstraction loses relationship between vaesbi | | ,
Render, i andj when states are joined. Formally, the $étof
tracked variables is empty/(=). Recall that the program coun-
ters are always kept relational.

With a more refined abstractioguarbpiaN proves the correct-

in the array is either occupied (set tiwe) or free (set tofalse.
In practice, an entry may correspond to a heap object or arfiee o
disk drive. Typically, each entry will also contain varicather data
fields, which we have omitted here for simplicity.

To avoid synchronization on each entry, the two processes
should always work on disjoint regions of memory. To enshed,t
at the start of their operation, the two processes handsha#ie
then each picks a separate region to work with (labels L1A.2 i
each process). Note that the handshake is not determjrastit
processes could select different regions on different $laakks.
In our case, there are two regions, with the first region dnnta
ing memory locations with an even index and the second region
containing memory locations with an odd index.

Def r agnent works by iterating over the array and moving all
used entries to one side of the pagpdat e works by selecting a
memory location and updating it if some condition holds.

Specification: The processes should always access disjoint mem-
ory locations when at the program points accessing sharetbnye
locations. (We omit the specification as it is long and tesljou

Result: The resulting constraints are shown in Table 2. The names
of the processes have been abbreviated using their first. |sibte

that the original program is incorrect (variableegion is incre-
mented without any synchronization), and with this morenesfi
abstraction, the inferred correction is not a false pasife.g. it is

not due to an imprecision of the abstraction). However, the c
straint[U: L2, U: L3] A [U: L3, U: L4] inferred with the coarser
cartesian abstraction is due to the imprecision of the atison.

7.4 3D Grid Computation

Consider a concurrent program that updates values in a 3ndime
sional grid. The program is shown in Fig. 8. Procesgeand P2
should always access disjoint memory locations and hensgmo
chronization between the processes should be reqtestarts by
reading a value from the input and then begins a loop whicls add

ness of the original program. The key reason why we succeededthis value to the locations on the diagonal of the 2D matrig. it/

in this case is that this abstraction maintains the relatignbe-
tween the valuesi I | andRender on each iteration of the loop
and can show that these two variables are never equal. Iexhis
ample, refining the abstraction led to proving the prograthovit
any necessary fixes. Further refining the abstraction (esgrting
variablei or j in the setl”) is not necessary.

erate over the diagonal of the 2D (x,y) plane as the valueridbiz
z1lisfixed to 1 and onlyk1 andy1 change. The loop comprises the
statements at labels L2 and L6Ra. After the plane is updateél
updates a value in another plane (L7-L9). For clarity we havg
shown the update of a single location, but this can also Endrd
to update the diagonal. Similarly, processupdates the diagonal

Barrier = F1 = F2 = 0; and Rosner [20] consider the problem of synthesizing a ik@act

S:?irggm:amz;() (module based on an LTL specification. They discuss the proble
/* Pick a Region */ of |mplem¢ntabllltyn th|§ setting, and. Qeflne necessary qr]d suffi-
L1 i = Region; Update() { ‘ cient conditions for the implementability of a given spegfion.

L2 Regon =1 - b f» Pick a Region +/ Our work focuses on concurrent programs for shared mematy an

i :e;rpzly >= N goto Lia; L2 Region =] - 1 is based on abstract interpretation, handling infinitéestgstems.

I+ has free entry? =/ L3: b = Pages[j]; Program Repair and Game-Based Synthesbstmann et. al.

'I:gf ibf :(:’Ege;[&' L?npty -0 {_2 Uip?asz; he Page =/ [14] consider the problem gfrogram repairas a game. In their

L7: enpty = i; “Pages[j] = true; approach, a game is constructed from (a modified versionhef) t

I+ Copy Entry / /+ Barrier Sync x/ program to be repaired, and an LTL specification of the comeess

L8: if (b && enpty > 0) { Ls: Barrier += 1; F2 = 0; property. The problem of repair boils down to finding a wirqin

L9: P ty] = true; L6: if (F2 ==1 ; ;

L10: eagfs[f:pz}’l = true : Ioto(L7' =1 strategy in that game. This approach has been later extended

(11 ngeg[i] “fal se: i? (Barrier == 2) { provide fault localization and fixing [15, 27]. The approachs

' Barrier = 0; F1 = 1; also been extended to work with predicate abstraction ih [b2

L12: i += 2; Region = 2; contrast to these, we focus on concurrent programs, useaebst

/L*l3:Ba?‘r’} ZrLgmch . }9‘“ oLz interpretation, and solve the quantitative problem of cotimy a

L14: Barrier += 1: F1 = 0O goto L6; minimally constrained program.

L15: if (F1 == 1) L7: In our previous work [30], we focused on inference of CCR
goto L16; } guards in finite-state concurrent programs, where the atblocks
:32” £ IBee‘: rier =|=:22): i i n0) were not modified. This work can be viewed as the next gental s
Region = 2; ’ Defragment () || Update(); and addresses the more general problem of infinite-statersys
goto L16; ¥ employs abstract interpretation, and infers atomicityst@ints (as
éor o Lo opposed to only inferring guards).

L16: goto L1; Dynamic ApproachesThe problem of restricting the program to

valid executions can be addressed by monitoring the progrtam
runtime and forcing it to avoid executions that violate the speci-
fication. However, restricting the executions of a programua-
time requires a recovery mechanism in case the programdglrea
performed a step that violates the specification, and/oedigtive
mechanism to check whether future steps lead to a violation.

Figure 7. Concurrent Defragmentation

x1 =0; yl =0; z1 = 1; Existing approaches using recovery mechanisms typicaly r
X2 =0, y2 =1, z2 = 1; quire user annotations to define a corrective action to lEntakien
x3 =0, y3 =1, z3 = 0; P2() LT X
Ll v = read(); the specification is violated. For example, software tretisaal
P1() L2: r = A[x2][y2][z2]; memory [23] is a special case of a recovery mechanism in vwthigh
L1 v = read(); L3: Alx2][y2][z2] =r + v; user provides atomicity annotations defining atomic sastidhe
L2: v = Axd][yl][z1]; L4: y2 += 1 system then requires the absence of read/write confliotsif éinis
L3: A[x1][yl][zl] =71 + v; L5: z2 += 1, L
L4 x1 4= 1: L6 if (y2 <N property is violated, the execution of an atomic sectiorssarted.
L5: y1 += 1; goto L2; Other examples include Tolerace [19] which creates locpleso
Le: if (x1 <N) of variables to detect and recover from races, and ISOLATZIR [
goto L2 m;'l?g)l | P20) which can recover from violations of isolation.
L7: v = read(); Search-based Synthesi$n previous work [28, 29], we used a
L8: r = A[x3][y3][z3]; semi-automated approach for exploring a space concuragbage
Lo ADSITy3I[28] =1 + v, collectors and linearizable data-structures. The workl assearch
Figure 8. Concurrent 3D Updating procedure and an abstraction specifically geared towaedsaifety
property required for the specific domain.
In sketching[25, 26], the user provides a reference program
of a 2D plane but this time in the (z,y) dimension. That is,hkeie of the desired implementation and some sketches whichaigrti
of x2 is fixed and onlyy2 andz2 are updated. specify certain optimized functions. The sketching coepduto-

Specification: The two processes should never access the Samematicallyfillsinthe missing low-level details to creategptimized

locations simultaneously. That s, if proc@sis reading or writing ~_implementation. Sketching has been used for bounded prsgra
shared data (e.g. at labels L2, L3, L8, LB2,should not be writing and in fspeual cases (.)f unboundgd domains [24]. In [25]’.."[3'(1'
simultaneously (e.g. be at L3), and vice versa®ay where the a candidate solution is done using a counterexample-guiitied

P ; ductive synthesis (CEGIS) algorithm that uses a backingted-
d f th b d | for both wes) ; : .
indices ot the array being accessed are equal for bo s checking procedure. Candidates are generated iteratvalyrun

Result: As shown in Table 2, refining the abstraction leads to through the checker. Counterexamples are used to limit éxe n

weaker atomicity constraints. In this example, we have 8rgypf candidates to be generated. In contrast, rather than gemecan-
abstractions, each leading to finer-grained solutions. didates and checking them, in our approach, the synthesipert

of the verification procedure and is based on abstract irgtzgion.
8. Related Work Further, in contrast to sketching, which aims to fswmesolution

) o for the sketch, we are interested in finding a solution withimal
Synthesis from Temporal Specification&arly work by Emerson gynchronization.

and Clarke [7] uses temporal specifications to generate chsyn
nization skeleton. This has been extended by Attie and Eonédos
synthesize programs with finer grained atomic sectionsHatly
work by Manna and Wolper [16] synthesizes CSP programs.|Pnue

Locks for Atomicity: There have been several works on inferring
locks for atomic sections. In the work by McCloskey et. al][1a
tool called Autolocker is presented. The tool takes as iappito-

gram that has been manually annotated with (i) atomic sectod
(ii) a mapping between locks and memory locations protebted
these locks. Autolocker produces a program that implemitmts
atomic sections in (i) with the locks in (ii). Further work Bmmi
et. al. [11] proposed a technique to automate part (ii) abdle
actual assignment of locations to locks is solved as an @giion
problem where the goal is to minimize the total number of $ock
while still achieving minimum interference between the ported
locks. The latest work of Cherem et. al. [6] proposes andailier-
native to automate (ii) while also computing actual lockcelaent
in the code. Our work is complementary to these approachesjra
focus is not on optimizing the implementation of atomic B,
but on inferring minimally atomic synchronization.

9. Conclusions and Future Work

In this paper, we presented a novel algorithm for the autimmat
synthesis of efficient synchronization in concurrent inéirstate
programs (AGS). The synchronization can be realized by fpodi
ing either the program or the scheduler. Our algorithm itam
abstract interpretation and thus applies to concurrentifafstate
programs.

The AGS algorithm leads to a new verification approach: it
allows for both the abstractioand the program to be modified
simultaneously until the abstraction is precise enougtetdywthe
(modified) program. This enables verification of a prograraises
where it would have otherwise failed.

We implemented the AGS approach in a prototype tool named
GUARDIAN, and successfully applied it to several small but interest-

ing concurrent program&uARrDIAN Works with various numerical
abstractions. In the future, we intend to investigate ieswigh finer
abstract domains, such as the trace partitioning domain\iz2ch
is a natural fit for our setting, as it allows to abstract ilgavings
with varying degrees of precision.

[7] CLARKE, E.,AND EMERSON, E. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic.Lagic of
Programs, Workshofil982), pp. 52—71.

[8] CLARKE, E. M., GRUMBERG, O., HA, S., LU, Y., AND VEITH,
H. Counterexample-guided abstraction refinementCAvV (2000),
pp. 154-169.

[9] CLARKE, JR., E., GRUMBERG, O.,AND PELED, D. Model Check-
ing. The MIT Press, 1999.

[10] Cousor, P.,AND CousoT, R. Abstract interpretation: A unified lat-
tice model for static analysis of programs by constructibapproxi-
mation of fixed points. IPOPL(1977), pp. 238-252.

[11] EmMMI, M., FISCHER, J. S., HALA, R.,AND MAJUMDAR, R. Lock
allocation. InNPOPL(2007), pp. 291-296.

[12] GRIESMAYER, A., BLOEM, R. P.,AND COOK, B. Repair of boolean
programs with an application to C. RAV (2006), pp. 358-371.

[13] HENZINGER, T. A., JHALA, R., MAJUMDAR, R., AND SUTRE, G.
Lazy abstraction. 1fPOPL(2002), pp. 58-70.

[14] JOBSTMANN, B., GRIESMAYER, A., AND BLOEM, R. Program
repair as a game. IBAV (2005), pp. 226—-238.

[15] JOBSTMANN, B., STABER, S., GRIESMAYER, A., AND BLOEM, R.
Finding and fixing faults.Journal of Computer and System Sciences
(JCSS)2008).

[16] MANNA, Z., AND WOLPER, P. Synthesis of communicating pro-
cesses from temporal logic specificationsACM Trans. Program.
Lang. Syst. (TOPLAS) 6 (1984), 68—93.

[17] McCLOSKEY, B., ZHOU, F., GaYy, D., AND BREWER, E. Au-
tolocker: synchronization inference for atomic section POPL
(2006), pp. 346-358.

[18] MINE, A. The octagon abstract domainHigher Order Symbol.
Comput. 191 (2006), 31-100.

[19] NAGPALY, R., IRTTABIRAMANZ , K., KIROVSKI, D.,AND ZORN, B.
Tolerace: Tolerating and detecting racesSTTMCS: Second Workshop
on Software Tools for Multi-Core Systeif2907).

We demonstrated our approach using atomic sections asrthe sy [20] PNUELI, A., AND ROSNER R. On the synthesis of a reactive module.

chronization primitive, buaivoi d andi npl enent can be real-
ized using other synchronization primitives. In the futwve intend
to explore extensions of AGS to other synchronization gies.

The AGS algorithm described in this paper can also be applied

in a dynamic setting, where invalid interleavings are aiediby

running the program driven by test-cases. In such a settieg,
constraints obtained from dynamic executions can be usgiv¢o
the user partial program corrections, or used to limit thecspthat
has to be explored statically.

Acknowledgement

The authors wish to thank Mooly Sagiv for many insightful com
ments on an earlier version of this work.

References

[1] The SAT4J SAT solver. available bt t p: / / ww. sat 4j . or g/ .

[2] ATTIE, P.,AND EMERSON, E. Synthesis of concurrent systems for an
atomic read/atomic write model of computation A®DC '96(1996),
ACM, pp. 111-120.

[3] BALL, T.,AND RAJAMANI, S. K. Automatically validating temporal
safety properties of interfaces. 8PIN(2001), pp. 103-122.

[4] BLANCHET, B., Cousot, P., Qusot, R., FREeT, J.,
MAUBORGNE, L., MINE, A., MONNIAUX, D., AND RIVAL,
X. A static analyzer for large safety-critical software. RLDI
(2003), pp. 196-207.

[5] BLOEM, R., CHATTERJEE K., HENZINGER, T., AND JOBSTMANN,
B. Better quality in synthesis through quantitative ohjexd. InCAV
(2009), pp. 140-156.

[6] CHEREM, S., CHILIMBI, T., AND GULWANI, S. Inferring locks for
atomic sections. 1°LDI (2008), pp. 304-315.

In POPL '89(New York, NY, USA, 1989), ACM, pp. 179—190.

[21] RAJAMANI, S., RAMALINGAM , G., RANGANATH, V.-P., AND
VASWANI, K. Controlling non-determinism for semantic guarantees.
In Exploiting Concurrency Efficiently and Correctly — (EQ2008).

[22] RIvAL, X., AND MAUBORGNE, L. The trace partitioning abstract
domain.ACM Trans. Program. Lang. Syst.,29(2007), 26.

[23] SHAvIT, N., AND TouITOU, D. Software transactional memory. In
PODC '95(New York, NY, USA, 1995), ACM, pp. 204-213.

[24] SOLAR-LEZAMA, A., ARNOLD, G., TaNCAuU, L., Bobik, R.,
SARASWAT, V. A., AND SESHIA, S. A. Sketching stencils. IRLDI
(2007), pp. 167-178.

[25] SoLAR-LEZAMA, A., JONES, C. G.,AND BoDIK, R. Sketching
concurrent data structures. RLDI (2008), pp. 136-148.

[26] SOLAR-LEZAMA, A., RABBAH, R. M., Bobik, R., AND
EBcloGLu, K. Programming by Sketching for Bit-Streaming Pro-
grams. InPLDI (2005), pp. 281-294.

[27] STABER, S., DBSTMANN, B., AND BLOEM, R. Finding and fixing
faults. INCHARME(2005), pp. 35-49.

[28] VECHEV, M., AND YAHAV, E. Deriving linearizable fine-grained
concurrent objects. IRLDI (2008), pp. 125-135.

[29] VECHEV, M. T., YAHAV, E., BACON, D. F., AND RINETZKY, N.
Cgcexplorer: a semi-automated search procedure for pisoealrect
concurrent collectors. IRLDI (2007), pp. 456-467.

[30] VECHEV, M. T., YAHAV, E.,AND YORSH, G. Inferring synchroniza-
tion under limited observability. ITACAS(2009), pp. 139-154.

