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What happens when we ignore uncertainty?









Alternatives...

Table 7
Stevens et al. 2006, table 2: Determinants
of authoritarian aggression

Coefficient
Variable (Standard Error)
Constamt 41 (.93)
Countries
Argentina 1.31 (.33)BM
Chile .93 (.32)"0M
Colombia 1.46 (.32)**BM
Mexico 07 (a2)ACHCOV
Venezuela 96 (.37)BM
Threat
Retrospective egocentric .20 (.13)
economic perceptions
Prospective egocentric 22 (12
economic perceplions
Ratrospective sociotropic =21 (12"
economic perceptions
Prospective sociotropic =32 (12)°
economic perceptions
Ideclogical distance from =27 (.07
president
Ideology
Ideology .23 (.07)"*
Individual Differences
Age .00 (.01)
Female -.03 (.21)
Education A3(.14)
Academic Sector 16 (.29)
Business Sector .31 (.25)
Government Sector -.10(.27)
R? A5
Adjusted /? 2
N 500

“p < .01, *p < .05, *p < .10 (wolailed)

ACoefficient ig significantly different from Argentina's at
p= .05;

ECoeflicient is significantly different from Brazil's at p < .05,
CHicoefficient is significantly different from Chile's at p < 05;
“OCoefficient is significantly different from Colombia's at

p < .05
MCoefficient is significantly different from Mexico's at p < .05;

YCoefficient is signiticantly different from Venezuela's at
p < .05.
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How easy is it to ignore the uncertainty?

Coefficient

Variable (Standard Error) Argentina- ' ———
Constant 41 {.93} Chile— : P
Countries .

Argentina R b el e Colombia- : — e

Chile .93 (.32)""BM :

Colombia 1.46 (.32)**BM Mexico- —_——

Mexico A7 32)ACH.COV '

Venezuela 96 |.37)+8M Venezuela A B

This contributes to



Dichotomania...



Predictions from last US presidential election
[http://wapo.st/2{CYvDW]

28% 15% 2%


http://wapo.st/2fCYvDW

Predictions from last presidential election
[http://wapo.st/2{CYvDW]



http://wapo.st/2fCYvDW

People are very good at ignoring uncertainty...



People are very good at ignoring uncertainty...

Especially when we provide bad
uncertainty representations



Ilcon arrays in medical risk communication
[Figure from Fagerlin et al, 2005]

Success Rate of Balloon Angioplasty Success Rate of Bypass Surgery

cessiully
| I I | cured of angina

Frequency framing or discrete outcome visualization



What is an icon array for a
continuous distribution?
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18/20 = 90% chance the bus comes at ~8 min or later



Quantile dotplots
[Kay et al 2016, Fernandes et al 2018]

dot50

Better estimates, decisions with time  optimal—1.00 P <o 77

0.90 80% PPI

. 95% PPI
Variance decreases: 0.80
Even worst performers improve 0.70
0.60

Predicted
expected 0.50

Good uncertainty displays are ey
. optimal
possible! P 040

1 40
Trial



Okay, sure, so we should visualize uncertainty:.



Okay, sure, so we should visualize uncertainty:.

But it's such a pain...



Building uncertainty displays the fun way

Use:
1. to get samples from distributions
2. to organize those samples

3. to visualize samples easily



otep 1. Bayesian analysis



«—— A is faster

B is faster ——»

® o060 Data

|
12 B - A (difference in seconds)



«—— A is faster

B is faster ——»

® o060 Data

| want: | P(mean difference | data)
® o o® ® o000 o
l l l l l l l l
6 -4 -2 2 4 6 10

12 B - A (difference in seconds)



«—— A is faster

| want:

B is faster ——»

P(mean difference | data)

P(data | mean difference = x)

0 —

® o060 Data

I
12

B — A (difference in seconds)



<+«—— A isfaster | Bis faster ——»

| want: | P(mean difference | data)

P(data | mean difference = x)

® o060 Data

—"?
o e O .i [ [ _ o0 60 o
| I I : I I I I I
-6 -4 -2 0 2 4 6 10 12
X

B — A (difference in seconds)



«—— A is faster

B is faster ——»

® o060 Data

12 B - A (difference in seconds)

| want: | P(mean difference | data)
P(data | mean difference = x)
® o o® I e eses ©
l l l . l l l l l
6 —4 -2 2 4 6 8 10
X



«—— A is faster

B is faster ——»

® o060 Data

12 B - A (difference in seconds)

| want: | P(mean difference | data)
P(data | mean difference = x)
° o 0® s e o [
| l l I I l l l l
-6 -4 -2 2 : 4 6 8 10
X



«—— A is faster

B is faster ——»

| want: | P(mean difference | data)
P(data | mean difference = x)
° o 0o® ® ud:o ° ° ® o0 Data
l l l l I I l l l
-6 -4 -2 2 4 : 6 8 10 12 B - A (difference in seconds)



+«—— A is faster | Bis faster ——

| want: | P(mean difference | data)

Likelihood =
P(data | mean difference)

o 0o® o oo CY ) ) ° e o0 Data

| | | | | | | |
-4 -2 0 2 4 6 8 10 12 B - A (difference in seconds)



«—— A is faster

| want:

B is faster ——»

P(mean difference | data)

Likelihood =
P(data | mean difference)

—e—— Frequentist estimate
° o o® |o ® o0 o ® o oo
[ | | I I | ' ! '
-6 -4 -2 0 2 4 6 8 10 12

Data

B — A (difference in seconds)



«—— A is faster

| want:

Prior =
P(mean difference)

B is faster ——»

P(mean difference | data)

Likelihood =
P(data | mean difference)

0
—e—— Frequentist estimate
° o o® |o ® o0 o ® o oo
[ | | I I | ' ! '
-6 -4 -2 0 2 4 6 8 10 12

Data

B — A (difference in seconds)



+«—— A is faster

Prior =
P(mean difference)

| want:

B is faster ——»

P(mean difference | data) o Likelihood x Prior

Likelihood =
P(data | mean difference)

0
——§e—— Frequentist estimate
O o o® |o ® o0 o O o oo
| | | | | | | | |
-6 -4 -2 0 2 4 6 8 10 12

Data

B — A (difference in seconds)



«—— A is faster

| want:

Prior =
P(mean difference)

B is faster ——»

Posterior =

Likelihood =
P(data | mean difference)

P(mean difference | data) o Likelihood x Prior

0
—§e——— Frequentist estimate
® o o® |o ® o0 o ® o oo
I | | | | | | |
-6 —4 -2 0 2 4 6 10 12

Data

B — A (difference in seconds)



+«—— A is faster | Bis faster ——

Posterior =
| want: | P(mean difference | data) « Likelihood X Prior

Likelihood =
P(data | mean difference)

Prior =
P(mean difference)

0
e e Bayesian estimate
—§e——— Frequentist estimate
° o o® |o ® oo o ° o oo
I | | | | | | | |
-6 —4 -2 0 2 4 6 8 10 12

Data

B — A (difference in seconds)



«—— A is faster

Prior =
P(mean difference)

| want:

B is faster ——»

Posterior =
P(mean difference | data) o Likelihood x Prior

Likelihood =
P(data | mean difference)

0
T —————wmnnn 0 1 Posterior Samples
e e Bayesian estimate
—§e——— Frequentist estimate
° o o® |o ® oo o ° o oo
I | | | | | | | |
-6 —4 -2 0 2 4 6 8 10 12

Data

B — A (difference in seconds)



+«—— A is faster | Bis faster ——

Posterior =

| want: | P(mean difference | data) « Likelihood X Prior —

— Bayes' rule
P(A|B) « P(B|A) x P(A)
P(B | A) x P(A)

Prior = Likelihood = P(A | B) = P(E)

P(mean difference) P(data | mean difference)
0)

[ 1 U W 0 A A v 1 Poste rior Samples
- 9 . i
—e——— Frequentist estimate

° o 0o® ° () e o ° ® o0 Data

| | | | | | | | |
-6 -4 -2 0 2 4 6 8 10 12 B - A (difference in seconds)




otep 2. Tidy data, tidy samples
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How to build this chart

Predictors Samples from fits or predictions

X Samples of mean at x
............... 1.0 2.6

1.0 2.4

1.0 2.8

1.1 2.7

1.1 2.5

1.1 3.0

10.0 17.2

10.0 17.4

10.0 17.3




How to build this chart

tidybayes (R package) outputs tables like
this given model + table of predictors

Predictors Samples from fits or predictions

X Samples of mean at x
1.0 2.6

1.0 2.4

1.0 2.8

1.1 2.7

1.1 2.5

1.1 3.0

10.0 17.2

10.0 17.4

10.0 17.3




HOW tO bl].ild thiS Chart Predictors Samples from fits or predictions

X Samples of mean at x
What aggregation do | do in each group? 10 2 6
1.0 2.4
How do | map onto channels/marks? 1.0 2.8
1.1 2.7
1.1 2.5
—| 1.1 3.0
????? R I . i i
‘ E
10.0 17.2
10.0 17.4
10.0 17.3




otep 3. Grammar of graphics



HOW tO bl].ild thiS Chart Predictors Samples from fits or predictions

X Samples of mean at x
What aggregation do | do in each group? 10 2 6
1.0 2.4
How do | map onto channels/marks? 1.0 2.8
1.1 2.7
1.1 2.5
—| 1.1 3.0
????? R I . i i
‘ E
10.0 17.2
10.0 17.4
10.0 17.3




How to build this chart

What aggregation do | do in each group?

How do | map onto channels/marks?

Take mean,
95% interval

Geom: line +
band

Predictors Samples from fits or predictions
X Samples of mean at x
1.0 2.6
1.0 2.4
1.0 2.8
1.1 2.7
1.1 2.5

3.0
10.0 17.2
10.0 17.4
10.0 17.3




How to build this chart

What aggregation do | do in each group?

How do | map onto channels/marks?

Take first 100
samples

Geom: line

Group by
sample

Predictors Samples from fits or predictions
X Samples of mean at x
1.0 2.6
1.0 2.4
1.0 2.8
1.1 2.7
1.1 2.5

3.0
10.0 17.2
10.0 17.4
10.0 17.3




(Hurricane error cones)
[Cox et al, Visualizing Uncertainty in Predicted Hurricane Tracks, 2013]



(Hurricane error cones)
[Cox et al, Visualizing Uncertainty in Predicted Hurricane Tracks, 2013]



How to build this chart

What aggregation do | do in each group?

How do | map onto channels/marks?

Take first 100
samples

Geom: line

Group by
sample

Predictors Samples from fits or predictions
X Samples of mean at x
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HOW tO bl].ild thiS Chart Predictors Samples from fits or predictions

X Samples of mean at x
What aggregation do | do in each group? 10 26
1.0 2.4
How do | map onto channels/marks? 1.0 2.8
11 2.7
oo | 1.1 2.5
eom: line 11 3.0
Map Sample -> o : I : i
«| frame
(gganimate)
10.0 17.2
[Hullman et al, 188 ];g
HOPs, 2015] : :







Okay, but on the subject of HOPs



New York Times Election Needle

[https://www.nytimes.com/interactive/2016/11/08/us/elections/trump-clinton-election-night-live.html]


https://www.nytimes.com/interactive/2016/11/08/us/elections/trump-clinton-election-night-live.html










But shouldn't anxiety
be proportional to
uncertainty?



Tidy tables of samples are
powerful and generic



More examples



Uncertainty visualization !

And Bayesian analysis + tidy data + grammar of
graphics makes it an easier-to-explore design space.



