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What happens when we ignore uncertainty?







Alternatives...



Alternatives...

[Jonathan P Kastellec and Eduardo L Leoni. 2007. Using Graphs Instead 
of Tables in Political Science. Perspectives on politics 5, 4: 755–771]
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How easy is it to ignore the uncertainty?

This contributes to dichotomania



Dichotomania...



Predictions from last US presidential election
[http://wapo.st/2fCYvDW]
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People are very good at ignoring uncertainty...

 



People are very good at ignoring uncertainty...

Especially when we provide bad 
uncertainty representations



Icon arrays in medical risk communication
[Figure from Fagerlin et al, 2005]

Frequency framing or discrete outcome visualization

McGill ranked visual perception tasks by their accuracy.10,42

Accuracy was excellent when judging positions or lengths
against a common scale (such as heights of bars of a bar
graph); good when judging angles (such as size of slices in
a pie chart) and slopes (such as slopes of a line graph); fair
when judging areas (such as circles); and poor when
judging volumes or color and gray-scale densities.10

3 Numerical format: Performing mathematical calculations
such as converting from ratios to percentages is a learned
skill; ability to perform such tasks varies with education,
health literacy, and numeracy.6,7,43 A probability of 6 in
100 is formally equivalent to both 6% and 0.06, but the
different formats strongly affect reasoning. For example,
with ratios, problem-solving ability and comprehension
are worse when the denominators are different than when
they are the same: it is harder to compare and calculate
with the pair of numbers “1 in 250” and “1 in 1000” than
it is with “4 in 1000” and “1 in 1000”.5,44,45 Ratios with the
same denominator have been called “natural frequen-
cies.”5,44,45 In a study in outpatient clinics, only 56% could
identify the larger of two risks when they were written in
the “1-in-x” format.46 Complex-looking ratios such as
513/570 are more demanding to process than equivalent
but simpler ones (such as 9/10) or decimals (e.g., 0.90), as
shown by preference reversals with different formats.47

A discussion of more complex graphical perception tasks,
such as integrating information from multiple sources,
would require attention to more complex theories.12 How-
ever, most risk graphics involve relatively simple tasks such
as providing information about an individual risk, compar-
ing several risks, or judging trends in risk over time.

Research Review
Icon Arrays
An icon array portrays a risk at the discrete level of
measurement as a group of individual icons, such as dots or
stick figures. In numerical reasoning, people tend to perform
better on probability problems when the data are presented
at the discrete level rather than as percentages or propor-
tions.44,45,48 Slovic et al review evidence that presenting
information in terms of individuals can produce mental
imagery with strong affective elements.9

An icon display reduced the influence of vivid text anec-
dotes in a study of choices of medical treatment (Fig. 1).49 In
this study, people were asked to imagine having angina and
being offered more successful (75% success rate) but more
arduous bypass surgery, or less successful (50% success rate)
but less arduous balloon angioplasty. They also read anec-
dotes about patients who had had the procedures. The
number of anecdotes describing success strongly affected
participants’ choices. When the proportion of successes in
the anecdotes was the same as the treatments’ success rates
(for example, when 3 of the 4 bypass stories described a
treatment success), respondents became more likely to
choose the more successful alternative (bypass). When one
anecdote described success and one a failure, most respon-
dents chose the less arduous treatment (angioplasty). The
anecdote effect was significantly smaller when respondents
saw icon displays depicting the two treatments’ success
rates.49 The icon array showed the part-to-whole relation-
ship and the square icons were touching, so the display

might have been visually processed as areas rather than as
discrete icons.

In a focus group of women, participants preferred icon
arrays with smaller denominators because they seemed
simpler but also tended to think that graphics with larger
denominators portrayed risks as smaller.37 The findings are
not consistent with the common ratio-bias effect, in which
risks described as ratios of small numbers are considered
smaller than numerically equivalent risks described with
large numbers (e.g., 1 in 20 is considered less likely than 10
in 200).50 In another focus group study with low-income
women, participants preferred seeing an individualized risk
estimate depicted as a bar chart with an ordinal scale (low,
average, or high risk) rather than as an icon array or a
percentage, and rather than a bar chart showing a series of
relative risks for women in different risk categories.39

Fuller et al. used several tasks to assess how elderly patients
interpreted discrete icon displays.51 The patients could
match percentages to icon arrays displaying different pro-
portions (70% to 98% accuracy for different tasks). They
were less accurate when marking the graph to show prob-
abilities (either ratios with different denominators [38% to
79% accuracy] or percentages [51% to 98% accuracy]). The
authors did not assess whether the graphs were successful in
conveying the personal applicability of the risk. A short

F i g u r e 1. Part-to-whole icon array with sequential ar-
rangement. Proportions are easy to judge in this icon array
because the part-to-whole information is available visually.
Because the square icons are arranged as a block and are
touching each other, it is possible that they are visually
processed as areas rather than as discrete units. From
Fagerlin A, Wang C, Ubel PA. Reducing the influence of
anecdotal reasoning on people’s health care decisions: Is a
picture worth a thousand statistics? Med Decis Making
2005;25:398–405. Copyright 2005 by Sage Publications. Re-
printed by permission of Sage Publications, Inc.
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What is an icon array for a 
continuous distribution?
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Quantile dotplots
[Kay et al 2016, Fernandes et al 2018]

Better estimates, decisions with time

Variance decreases: 
Even worst performers improve

Good uncertainty displays are 
possible!
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Okay, sure, so we should visualize uncertainty.



Okay, sure, so we should visualize uncertainty.

But it’s such a pain...



Building uncertainty displays the fun way

Use:

1. Bayesian analysis to get samples from distributions

2. Tidy data to organize those samples

3. Grammar of graphics to visualize samples easily



Step 1. Bayesian analysis
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Step 2. Tidy data, tidy samples
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Step 3. Grammar of graphics
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(Hurricane error cones)
[Cox et al, Visualizing Uncertainty in Predicted Hurricane Tracks, 2013]
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and a 5 indicating that they strongly preferred the error cone. They were also asked for open-ended comments on the
study.

5. RESULTS

Figure 10 shows each of the six cases presented to the experiment participants, in their order of presentation, with the
top row of each case showing the error cone view, and the bottom row showing our method. These examples were

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6
FIG. 10: The six cases as shown to experiment participants.
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[Hullman et al,
HOPs, 2015]






Okay, but on the subject of HOPs



New York Times Election Needle
[https://www.nytimes.com/interactive/2016/11/08/us/elections/trump-clinton-election-night-live.html]

https://www.nytimes.com/interactive/2016/11/08/us/elections/trump-clinton-election-night-live.html










But shouldn’t anxiety
be proportional to
uncertainty?



Tidy tables of samples are 
powerful and generic



More examples



Uncertainty visualization can be fun!

And Bayesian analysis + tidy data + grammar of 
graphics makes it an easier-to-explore design space.


