. Military Space News .
MILITARY COMMUNICATIONS
The Radio Frequency Spectrum plus Machine Learning = equal A New Wave in Radio Technology
by Staff Writers
Washington DC (SPX) Aug 14, 2017


Conceptual depiction of the intersection of radio communication and artificial intelligence.

The current wave of artificial intelligence, driven by machine learning (ML) techniques, is all the rage, and for good reason. With sufficient training on digitized writing, spoken words, images, video streams, and other digital content, ML has become the basis of voice recognition, self-driving cars, and other previously only-imagined capabilities.

As billions of phones, appliances, drones, traffic lights, security systems, environmental sensors, and other radio-connected devices sum into a rapidly growing Internet of Things (IoT), there now is a need to apply ML to the invisible realm of radio frequency (RF) signals, according to program manager Paul Tilghman of DARPA's Microsystems Technology Office. To further that cause, DARPA also announced its new Radio Frequency Machine Learning Systems (RFMLS) program.

"What I am imagining is the ability of an RF Machine Learning system to see and understand the composition of the radio frequency spectrum - the kinds of signals occupying it, differentiating those that are 'important' from the background, and identifying those that don't follow the rules," said Tilghman. He would want that same system to be able to discern subtle but inevitable differences in the RF signals from what otherwise are identical, mass-manufactured IoT devices and to distinguish these from signals intended to spoof or hack into these devices.

"We want to be able to understand and trust what is happening in the Internet of Things and to stand up an RF forensics capability to identify unique and peculiar signals amongst the proverbial cocktail party of signals out there," said Tilghman.

The same situational awareness regarding the ever-changing composition of RF signals in any given space should also support a wireless communications management paradigm known as spectrum sharing.

That's a paradigm of shared spectrum use rather than the current practice of exclusive allocations governed by license agreements for specific frequencies. Tilghman is hoping to develop technologies to understand the current state of the spectrum for improved and extensive spectrum sharing-which can greatly expand the wireless communications capacity of the electromagnetic spectrum-both in the RFMLS program as well as in another major DARPA effort known as the Spectrum Collaboration Challenge.

AI's first and ongoing wave consists of expert systems that rigidly codify human expertise and decision-making in predictable, rule-driven domains, such as simple game playing, tax preparation, and industrial process control. Such expert systems also have been deployed in RF contexts where, for example, engineers have been able to specify in computer code the rigid rules used by radios to switch to unused frequencies when they encounter interference.

While effective, these systems have little understanding of what's actually happening in the spectrum. RF applications of the second and emerging machine-learning wave of AI should yield far more agile and versatile capabilities: an RFML system, with a sufficiently rich training set of RF data, should be able to identify an enormous range of both known and previously unseen RF waveforms.

The RFMLS program features four technical components that would integrate into future RFML systems:

Feature Learning: From data sets of RF signals, RFML systems will need to learn the characteristics used to identify and characterize signals in various civilian and military settings.

Attention and Saliency: Just as people can quickly direct their attention for a needed goal-finding ice cream in a huge supermarket, for example-amidst the morass of sensory input coming in at every moment, an RFML system will need to include algorithms for directing its artificial attention to what is potentially important in the RF spectrum it is operating in.

Researchers who win contracts to work on the RFMLS program will need to devise an equivalent within the RF domain of our own so-called salience detection, that is, the ability to identify and recognize important visual and auditory stimuli. The presence of a communications signal in a frequency band usually devoted to radar signals would be an example of a signal-of-interest that an RFMLS's salience-detection capability would have to notice.

Autonomous RF Sensor Configuration: Our eyes automatically adjust to changing light levels and they move and focus to keep the most important aspects of a dynamic visual scene in the most sensitive portions of the retina. The RFML systems that DARPA envisions would have an equivalent ability to automatically tune their receptivity to signals and signal features the systems deem to be most effective at accomplishing the task at hand.

Waveform Synthesis: A full RFML system also should be able to digitally synthesize virtually any possible waveform, much as human beings can pronounce any new word or add inflections or pauses to infuse gravitas or nuances of meaning into what they saying. This capability to create new waveforms tailored to the specific RF devices they emanate from should give other sophisticated radios the improved ability to identify friendly systems.

"If we get this right, we will have RF systems with the ability to discern and characterize signals in the ever-more-crowded spectrum. And that will give emerging automated systems, and the military commanders that rely on them, much needed information to understand the landscape of the wireless domain," said Tilghman. "I hope our new RFMLS program will forge the technical foundations for a new domain and community of AI research."

A Broad Agency Announcement describing the new RFMLS program, its goals, and how to submit proposals posted today on FedBizOpps

MILITARY COMMUNICATIONS
Envistacom wins $10M Army communications contract
Washington (UPI) Aug 9, 2017
The U.S. Army recently awarded Envistacom with a contract to provide communications and operations support to forces deployed in Europe, the Middle East and Africa. The support contract, issued by the U.S. Army Contracting Command - Aberdeen Proving Ground, is for the U.S. Army's 2nd Theater Signal Brigade and 102nd Strategic Signal Battalion and the Enterprise Satellite Communications ... read more

Related Links
Spectrum Collaboration Challenge
Read the latest in Military Space Communications Technology at SpaceWar.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MILITARY COMMUNICATIONS
Jacobs Technology awarded $4.6B contract for missile defense services

Japan deploys missile defence over N. Korea threat to Guam

US successfully tests missile intercept system

S. Korea speeds up US missile defence over North's missile test

MILITARY COMMUNICATIONS
N.Korean missiles based on motor from ex-Soviet plant: report

Ukraine to probe claim it supplied NKorea missile engine

Raytheon and Lockheed secure contract for foreign Javelin missile sales

Kiev says engine type 'used in N.Korea missiles' made for Russia

MILITARY COMMUNICATIONS
Balloons and drones and clouds

DJI announces pending fix for drones following Army ban

Iran rejects US claims of unsafe drone flight in Gulf

Iran drone flies close to US carrier in Gulf: Pentagon

MILITARY COMMUNICATIONS
ViaSat, Data Link receive $123.4M for MIDS JRTS radios

Envistacom wins $10M Army communications contract

82nd Airborne tests in-flight communication system for paratroopers

North Dakota UAS Training Center Depends on IGC Satellite Connectivity

MILITARY COMMUNICATIONS
Lockheed wins Special Operations logistics contract

SAIC to support Marine Combat Operations Center in $39M task order

LOC Performance receives $49.1 million Bradley upgrade contract

Lockheed Martin receives contract for Squad X infantry technology program

MILITARY COMMUNICATIONS
Kratos receives $46.2 million contract for Saudi Arabian defense services

DOD's acquisition, technology and logistics office to get a makeover

BAE plans defense hub in Australia; as group profits soar

Japan's scandal-hit defence chief resigns

MILITARY COMMUNICATIONS
India, China troops in high-altitude clash: officials

Japan, US conduct live-fire drill amid regional tension

Pentagon adjusts to life under unpredictable commander-in-chief

Iran chief of staff in Turkey for talks on Syria, Iraq

MILITARY COMMUNICATIONS
New method promises easier nanoscale manufacturing

Nanoparticles could spur better LEDs, invisibility cloaks

New material resembling a metal nanosponge could reduce computer energy consumption

How do you build a metal nanoparticle?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.