Skip to main content

Advertisement

Log in

Sensitivity of simulated South America climate to the land surface schemes in RegCM4

Climate Dynamics Aims and scope Submit manuscript

Abstract

This work evaluates the impact of two land surface parameterizations on the simulated climate and its variability over South America (SA). Two numerical experiments using RegCM4 coupled with the Biosphere–Atmosphere Transfer Scheme (RegBATS) and the Community Land Model version 3.5 (RegCLM) land surface schemes are compared. For the period 1979–2008, RegCM4 simulations used 50 km horizontal grid spacing and the ERA-Interim reanalysis as initial and boundary conditions. For the period studied, both simulations represent the main observed spatial patterns of rainfall, air temperature and low level circulation over SA. However, with regard to the precipitation intensity, RegCLM values are closer to the observations than RegBATS (it is wetter in general) over most of SA. RegCLM also produces smaller biases for air temperature. Over the Amazon basin, the amplitudes of the annual cycles of the soil moisture, evapotranspiration and sensible heat flux are higher in RegBATS than in RegCLM. This indicates that RegBATS provides large amounts of water vapor to the atmosphere and has more available energy to increase the boundary layer thickness and cause it to reach the level of free convection (higher sensible heat flux values) resulting in higher precipitation rates and a large wet bias. RegCLM is closer to the observations than RegBATS, presenting smaller wet and warm biases over the Amazon basin. On an interannual scale, the magnitudes of the anomalies of the precipitation and air temperature simulated by RegCLM are closer to the observations. In general, RegBATS simulates higher magnitude for the interannual variability signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Bonan GB (1996) A land surface model (LSM version1) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. NCAR Technical Note NCAR/TN-417 + STR. National Center for Atmospheric Research, Boulder, CO, p 150

  • Bruno RD, da Rocha HR, de Freitas HC, Goulden ML, Miller SD (2006) Soil moisture dynamics in an eastern Amazonian tropical forest. Hydrol Processes 20:2477–2489

    Article  Google Scholar 

  • Collins WD, Lee-Taylor JM, Edwards DP, Francis GL (2006b) Effects of increased near-infrared absorption by water vapor on the climate system. J. Geophys. Res., in press

  • da Rocha HR, Goulden ML, Miller S, Menton MC, Oliveira Pinto LDV, Freitas H, Figueira AMS (2004) Seasonality of water and heat fluxes over a tropical Forest in eastern Amazônia. Ecological Applications, S22–S32

  • da Rocha HR, Manzi AO, Cabral OM, Miller SD, Goulden ML, Saleska SR, R.-Coupe N, Wofsy SC, Borma L et al (2009) Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J Geophys Res 114:G00B12. doi:10.1029/2007JG000640

    Article  Google Scholar 

  • da Rocha RP, Cuadra SV, Reboita MS, Kruger LF, Ambrizzi T, Krusche N (2012) Effects of RegCM3 parameterizations on simulated rainy season over South America. Clim Res 52:253–265

  • da Rocha RP, Reboita MS, Llopart M (2016) A comparative analysis of the horizontal resolution impacts in simulated climate over South America. http://indico.ictp.it/event/7613/session/2/contribution/18/material/slides/0.pdf

  • da Rocha RP, Reboita MS, Dutra LMM, Llopart M, Coppola E (2014) Climatic Change 125: 95. doi:10.1007/s10584-014-1119-y

  • Dai Y, Zeng QC (1997) A land surface model (IAP94) for climate studies. Part I: formulation and validation in off-line experiments. Adv Atmos Sci 14:433–460

  • de Gonçalves LGG, Borak JS, Costa MH, Saleska SR, Baker I et al (2013) Overview of the large-scale biosphere–atmosphere experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP). Agric For Meteorol 182–183:111–127

    Article  Google Scholar 

  • de Jesus EM, da Rocha RP, Reboita MS, Llopart M, Mosso Dutra LM, Remedio ARC (2016) Contribution of cold fronts to seasonal rainfall in simulations over the southern La Plata Basin. Clim Res 68:243–255

  • Deardorff J (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res 83:1889–1903

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1993) Biosphere–Atmosphere Transfer Scheme (BATS) version 1e as coupled to Community Climate Model. NCAR Tech. Note NCAR/TN-387 + STR, p 72

  • Dirmeyer PA, Schlosser CA, Brubaker KL (2009b) Precipitation, recycling, and land memory: an integrated analysis. J Hydrometeorol 10(1):278–288. doi:10.1175/2008JHM1016.1

  • Elguindi N, Bi X, Giorgi F, Nagarajan B, Pal J, Solmon F (2004) RegCM version 3.0 user’s guide. Trieste: PWCG Abdus Salam ICTP, p 48

  • Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782

    Article  Google Scholar 

  • Fernandez JPR, Franchito SH, Rao VB (2006a) Simulation of summer circulation over South America by two regional climate models. Part I. Mean climatology. Theor Appl Climatol 86:247–260

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F et al (2012) RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Grimm AM, Ambrizzi T (2009) Teleconnections into South America from the tropics and extratropics on interannual and intraseasonal timescales. In: Past climate variability in South America and surrounding regions: from the last glacial maximum to the Holocene. In: Vimeux F, Sylvestre F, Khodri M (eds) Developments in paleoenvironmental research. Springer, Netherlands, pp 159–191, doi:10.1007/978-90-481-2672-9

  • Hartmann DL (1994) Global physical climatology. Academic Press, San Diego

    Google Scholar 

  • Koster RD, Suarez MJ (2001) Soil moisture memory in climate models. J Hydrometeor 2:558–570

    Article  Google Scholar 

  • Koster RD et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140

    Article  Google Scholar 

  • Koster R, Mahanama S, Yamada T, Balsamo G, Boisserie M, Dirmeyer P, Doblas-Reyes F, Gordon T, Guo Z, Jeong JH, Li Z, Luo L, Maleysev S, Merryfield W, Seneviratne SI, Stanelle T, van den Hurk B, Vitart F, Wood EF (2010) The contribution of land surface initialization to subseasonal forecast skill: first results from the GLACE-2 project. Geophys Res Lett 37:L02402

    Article  Google Scholar 

  • Koster RD, Mahama, a S, Yamada TJ, Balsamo G et al (2011) The second phase of the global land-atmosphere coupling experiment: Soil moisture contributions to subseasonal forecast skill. J Hydrometeorol 12:805–822

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial riability in gauge corrected, global precipitation. Int J Climatology 10:111–127

    Article  Google Scholar 

  • Llopart M, Coppola E, Giorgi F, da Rocha RP, Cuadra S. Climatic Change (2014) 125: 111. doi:10.1007/s10584-014-1140-1

  • Marengo J (1992) Interannual variability of surface climate in the Amazon basin. Int J Climatol 12:853–863

    Article  Google Scholar 

  • Menendez CG et al (2010) claris project: towards climate downscaling in South America. Meteorol Z 19:357–362

    Article  Google Scholar 

  • Misra V, Dirmeyer PA, Kirtman BP (2002) Regional simulation of interannual variability over South America. J Geophys Res 107:8036. doi:10.1029/2001JD900216

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatology 25:693–712

    Article  Google Scholar 

  • Nepstad DC, Carvalho CR de, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Silva ED da, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:66–669

    Article  Google Scholar 

  • Oleson KW, Niu G, Yang ZL, Lawrence DM et al (2008) Improvements to the community land model and their impact on the hydrologic cycle. J Geophys Res 113:G01021. doi:10.1029/2007JD000563

    Article  Google Scholar 

  • Orlowsky B, Seneviratne SI (2010) Statistical analyses of land atmosphere feedbacks and their possible pitfalls. J Clim 23:3918–3932

    Article  Google Scholar 

  • Pal JS et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409

    Article  Google Scholar 

  • Pessacg NL, Solman SA, Samuelsson P, Sanchez E, Marengo J, Li L, Remedio ARC, Rocha RPd, Mourão C, Jacob D (2013) The surface radiation budget over South America in a set of regional climate models from the CLARIS-LPB project. Clim Dyn. doi:10.1007/s00382-013-1916-4

  • Rauscher SA, Seth A, Liebmann B, Qian J-H, Camargo SJ (2007) Regional climate model–simulated timing and character of seasonal rains in South America. Mon Wea Rev 135:2642–2657.

  • Reboita MS, da Rocha RP, Ambrizzi T, Sugahara S (2010) South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Clim Dyn 35:1331–1347

  • Reboita MS, Fernandez JPR, Llopart MP, Rocha RP, Pampuch LA, Cruz FT (2014) Assessment of RegCM4.3 over the CORDEX South America domain: sensitivity analysis for physical parameterization schemes. Clim Res 60:215–234

  • Ronchail J, Cochonneau G, Molinier M, Guyot JL, Gorreti A, Guimarães V, de Oliveira E (2002) Interannual rainfall variability in the Amazon basin and sea surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans. Int J Climatol 22:1663–1686

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with El Niño/Southern Oscillation. Mon Wea Rev 115:1606–1626

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the Southern Oscillation. J Clim 2:268–284

    Article  Google Scholar 

  • Saleska SR, Didan K, Huete A, da Rocha HR (2007) Amazon forests green-up during 2005 drought. Science 318(5850):612

    Article  Google Scholar 

  • Sellers PJ, Shuttleworth WJ, Dorman J (1989) Calibrating the simple biosphere model for amazonian tropical forest using field and remote sensing data. Part I: Average calibration with field data. J Appl Meteorol 28:727–759

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz CJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD (1996a) A revised land surface parameterization (SiB2) for atmospheric GCMs, Part I: Model formulation. J Climate 9:676–705

    Article  Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275(5299):502–509

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land atmosphere coupling and climate change. Eur Nat 443:205–209

    Article  Google Scholar 

  • Seth A, Rauscher SA, Carmago SJ, Qian JH, Pal JS (2007) RegCM3 regional climatologies using reanalysis and ECHAM global model driving fields. Climate Dyn 28:461–480

    Article  Google Scholar 

  • Silva VBS, Kousky VE, Shi W, Higgins RW (2007) An improved historical daily precipitation analysis for Brazil. J Hydrometeorol 8:847–861

  • Silva MES, Pereira G, da Rocha RP (2015) Theor Appl Climatol 125:609. doi:10.1007/s00704-015-1516-9

    Article  Google Scholar 

  • Solman SA, Sanchez E, Samuelsson P, da Rocha RP, Li L, Marengo J, Pessacg NL, Remedio ARC, Chou SC, Berbery H, Le Treut H, de Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41(5–6):1139–1157

    Article  Google Scholar 

  • Sörensson AA, Menéndez CG (2011) Summer soil-precipitation coupling in South America. Tellus Ser A Dyn Meteorol Oceanogr 63:56–68

    Article  Google Scholar 

  • Sörensson AA, Menéndez CG, Samuelsson P, Willén U, Hansson U (2010) Soil-precipitation feedbacks during the South American Monsoon as simulated by a regional climate model. Clim Change 98:429–447

    Article  Google Scholar 

  • Steiner AL, Pal JS, Giorgi F, Dickinson RE, Chameides WL (2005) Coupling of the common land model (CLM0) to a regional climate model (RegCM). Theor Appl Climatol 82(3–4):225–243

    Article  Google Scholar 

  • Steiner AL, Pal JS, Rauscher SA, Bell JL et al (2009) Land surface coupling in regional climate simulations of the West Africa monsoon. Clim Dyn 33(6):869–892

    Article  Google Scholar 

  • Stieglitz M, Rind D, Famiglietti J, Rosenzweig C (1997) An efficient approach to modeling the topographic control surface hydrology for regional and global climate modeling. J Clim 10:118–137

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J et al (2013) IPCC 2013 Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Tawfik AB, Steiner AL (2011) The role of soil ice in land–atmosphere coupling over the United States: a soil moisture precipitation winter feedback mechanism. J Geophys Res 116:D02113

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Amer Meteor Soc 79:61–78

    Article  Google Scholar 

  • Uvo CRB, Repelli CA, Zebiak S, Kushnir Y (1998) The relationship between tropical Pacific and Atlantic SST and northeast Brazil monthly precipitation. J Climate 11:551–562

    Article  Google Scholar 

  • Vera C et al (2006) Toward a unified view of the American monsoon systems. J Climate 19:4977–5000

    Article  Google Scholar 

  • Wilks DS (1995) Statistical Methods in the atmospheric sciences: an introduction. Academic Press, p 467

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc 78:2539–2558

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) - Brazil (Procs. 155700/2010-3, 249244/2013-6, 474929/2013-2, 474881/2013-0 and 307547/2014-0), and from Fapesp GoAmazon (Proc.2013/50521-7) and CAPES/PROEX. We thank the reviewers for their constructive and helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Llopart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llopart, M., da Rocha, R.P., Reboita, M. et al. Sensitivity of simulated South America climate to the land surface schemes in RegCM4. Clim Dyn 49, 3975–3987 (2017). https://doi.org/10.1007/s00382-017-3557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3557-5

Keywords

Navigation