Skip to main content

Advertisement

Log in

Regime shift of global oceanic evaporation in the late 1990s using OAFlux dataset

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

After the decadal change being marked by a distinct transition from a downward trend to an upward trend around 1977–1978, the global oceanic evaporation is found to present a regime shift to downward trend from 2000 onwards by using the Objectively Analyzed air-sea Fluxes (OAFlux) dataset. The robustness of post-2000 decreasing trend of global oceanic evaporation featured by OAFlux is fairly confirmed by checking the total precipitation trend from the Global Precipitation Climatology Project (GPCP) and the CPC Merged Analysis of Precipitation (CMAP) datasets via budget constraint. Analysis on the 1999/2000 trend reversal in global mean temporal evolution and local linear trend patterns of evaporation and related variables is performed. Results show that the positive trend of evaporation before 2000 is primarily associated with both the SST warming and the strengthening of near-surface wind, while the negative trend of evaporation after 2000 may be highly correlated with the weakening of near-surface wind speed and reduction in sea-air humidity difference. The post-2000 decreasing of oceanic evaporation mainly effects precipitation trend over oceans via budget constraint, while land precipitation shows no significant decreasing trend, which may be explained by the increasing of evapotranspiration over land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adler RF, et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Allan RP, Soden BJ, John VO, Ingram W, Good P (2010) Current changes in tropical precipitation. Environ Res Lett 5:025205

    Article  Google Scholar 

  • Alexander MA, Scott JD (1997) Surface flux variability over the North Pacific and North Atlantic Oceans. J. Climate 10:2963–2978

    Article  Google Scholar 

  • Baumgartner A, Reichel E (1975) The World Water Balance. Elsevier, New York, p 179

    Google Scholar 

  • Blunden J, Arndt DS (2013) State of the climate in 2012. Bull Amer Meteor Soc 94:S1–S258

    Article  Google Scholar 

  • Boykoff MT (2014) Media discourse on the climate slowdown. Nat Clim Change 4:156–158

    Article  Google Scholar 

  • Cao N, Ren BH, Zheng JQ (2015) Evaluation of CMIP5 climate models in simulating 1979–2005 oceanic latent heat flux over the Pacific,. Adv Atmos Sci 32(12):1603–1616

    Article  Google Scholar 

  • Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–458

    Article  Google Scholar 

  • Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett 36:L08706

    Article  Google Scholar 

  • England MH, et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4(3):222–227

    Article  Google Scholar 

  • Foster G, Rahmstorf S (2011) Global temperature evolution 1979–2010. Environ Res Lett 6(4):044022

    Article  Google Scholar 

  • Gimeno L, et al (2012) Oceanic and terrestrial sources of continental precipitation. Rev Geophys 50:RG4003

    Article  Google Scholar 

  • Greve P, Orlowsky B, Mueller B, Sheffield J, Reichstein M, Seneviratne SI (2014) Global assessment of trends in wetting and drying over land. Nat Geosci 7(10):716–721

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Climate 19(21):5686–5699

    Article  Google Scholar 

  • Huang P, Xie SP, Hu K, Huang G, Huang RH (2013) Patterns of the seasonal response of tropical rainfall to global warming. Nat Geosci 6(5):357–361

    Article  Google Scholar 

  • Iwasaki S, Kubota M (2011) Increasing trends for the surface heat flux and fresh water flux in the North Pacific eastern subtropical region. Geophys Res Lett 38:L10604

    Article  Google Scholar 

  • Karl TR, et al (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Science 348(6242):1469–1472

    Article  Google Scholar 

  • Kiehl JT, Trenberth KE (1997) Earth’s annual global mean energy budget. Bull Amer Meteor Soc 78(2):197–208

    Article  Google Scholar 

  • Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    Article  Google Scholar 

  • Kutzbach JE (1970) Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea-level pressure. Mon Wea Rev 98:708–716

    Article  Google Scholar 

  • Lewandowsky S, Risbey JS, Oreskes N (2015) On the definition and identifiability of the alleged “hiatus”in global warming. Sci. Rep. 5:16784

    Article  Google Scholar 

  • Li G, Ren BH, Zheng JQ, Yang CY (2011) Trend singular value decomposition analysis and its application to the global ocean surface latent heat flux and SST anomalies. J Climate 24:2931–2948

    Article  Google Scholar 

  • Li G, Ren BH, Yang CY, Zheng JQ (2011) Revisiting the trend of the tropical and subtropical Pacific surface latent heat flux during 1977–2006. J Geophys Res 116:D10115

    Article  Google Scholar 

  • Li G, Xie SP (2012) Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys Res Lett 39:L22703

    Google Scholar 

  • Li G, Xie SP (2014) Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J Climate 27:1765–1780

    Article  Google Scholar 

  • Li G, Du Y, Xu H, Ren BH (2015) An intermodel approach to identify the source of excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J. Climate 28:7630–7640

    Article  Google Scholar 

  • Li G, Xie SP, Du Y (2015) Monsoon-induced biases of climate models over the tropical Indian Ocean. J Climate 28:3058–3072

    Article  Google Scholar 

  • Liu JP, Curry JA (2006) Variability of the tropical and subtropical ocean surface latent heat flux during 1989-2000. Geophys Res Lett 33:L05706

    Google Scholar 

  • Liu WT, Katsaros KB, Businger JA (1979) Bulk Parameterizations of air–sea exchanges of heat and water vapor including molecular constraints at the interface. J Atmos Sci 36:1722–1735

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific decadal climate oscillation with impacts on salmon. Bull Amer Meteor Soc 78:1069–1079

    Article  Google Scholar 

  • Meehl GA, Hu AX, Arblaster AX, Fasullo JT, Trenberth KE (2013) Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Climate 26:7298–7310

    Article  Google Scholar 

  • Nieves V, Willis JK, Patzert WC (2015) Recent hiatus caused by decadal shift in Indo-Pacific heating. Science, aaa4521

  • Otto A, et al (2013) Energy budget constraints on climate response. Nat Geosci 6:415–416

    Article  Google Scholar 

  • Pan YF, Ren BH (2018) The Contrasting Hydrological Cycle over the Land and Sea since 2003. Clim Dynam, revised

  • Prytherch J, Kent EC, Fangohr S, Berry DI (2015) A comparison of SSM/i-derived global marine surface-specific humidity datasets. Int J Climatol 35(9):2359–2381

    Article  Google Scholar 

  • Rinke A, Melsheimer C, Dethloff K, Heygster G (2009) Arctic total water vapor: Comparison of regional climate simulations with observations, and simulated decadal trends. J Hydrometeorol 10:113–129

    Article  Google Scholar 

  • Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298:1410–1411

    Google Scholar 

  • Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34(17)

  • Santer BD, et al (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105(D6):7337–7356

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Trenberth KE (1990) Recent observed interdecadal climate changes in the Northern Hemisphere. Bull Amer Meteor Soc 71:988–993

    Article  Google Scholar 

  • Trenberth KE, Smith L, Qian T, Dai A, Fasullo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8(4):758–769

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl JT (2009) Earth’s global energy budget. Bull Amer Meteor Soc 90(3):311–323

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimations, and numerical model outputs. Bull Amer Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • Yu LS (2007) Global variations in oceanic evaporation (1958–2005): The role of the changing wind speed. J Climate 20:5376–5390

    Article  Google Scholar 

  • Yu LS, Weller RA, Sun BM (2004) Mean and variability of the WHOI daily latent and sensible heat fluxes at in situ flux measurement sites in the Atlantic Ocean. J Climate 17:2096–2118

    Article  Google Scholar 

  • Yu LS, Jin XZ, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables, Woods Hole Oceanographic Institution, OAFlux Project Technical Report OA-2008-01 64 pp

  • Yu LS, Jin X, Stackhouse PW, Wilber AC, Josey SA, Xue Y, Kumar A (2015) Ocean surface heat and momentum fluxes, In ”State of the Climate in 2014”. Bull Amer Meteor Soc 96(7):S68–S71

    Google Scholar 

  • Yu LS, Weller RA (2007) Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981-2005), . Bull Amer Meteor Soc 88:527–539

    Article  Google Scholar 

  • Yu JY, Kim ST (2011) Relationships between Extratropical Sea Level Pressure Variations and the Central-Pacific and Eastern-Pacific Types of ENSO. J Climate 24:708–720

    Article  Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-Like interdecadal variability: 1900–93. J Climate 10:1004–1020

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the helpful suggestions from the anonymous reviewers. Authors acknowledge the use of OAFlux products, GPCP and CMAP products. Information on the WHOI OAFlux project and related products can be found at http://oaflux.whoi.edu/. The GPCP and CMAP data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/.

Funding

This work was supported by the Basic planning project of Minisitry of Science and Technology (No.2016YFC1401403), the National Natural Science Foundation of China (Project No. 41675066), and the program for scientific research start-up funds of Guangdong Ocean University (No. R17056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, N., Ren, B. Regime shift of global oceanic evaporation in the late 1990s using OAFlux dataset. Theor Appl Climatol 136, 1407–1417 (2019). https://doi.org/10.1007/s00704-018-2566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2566-6

Keywords

Navigation