Skip to main content

Advertisement

Log in

Characteristics of Eurasian snowmelt and its impacts on the land surface and surface climate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The local hydrological and climatic impacts of Eurasian snowmelt are studied using advanced land surface and atmospheric data. It is found that intense melting of snow is located at mid-high latitudes in April and May. Snowmelt plays an important role in determining the seasonal cycles of surface runoff and soil moisture (SM). Specifically, melting is accompanied by sharp responses in surface runoff and surface SM while the impacts are delayed for deeper-layer of soil. This is particularly significant in the western sector of Eurasia. On interannual timescales, the responses of various surface parameters to snowmelt in the same month are rather significant. However, the persistence of surface SM anomalies is weak due to the strong soil evaporation anomalies and surplus of surface energy for evaporation. Strong impacts on the sensible heat flux, planetary boundary layer height and precipitation in the next month following the melting of snow are identified in west Russia and Siberia. Downward propagation of surface SM anomalies is observed and a positive evaporation–convection feedback is identified in west Russia. However, the subsequent impacts on the local convective precipitation in late spring-summer and its contribution to the total precipitation are seemingly weak. The atmospheric water vapor convergence has strong control over the total precipitation anomalies. Overall, snowmelt-produced SM anomalies are not found to significantly impact the late spring-summer local climate anomalies in Northern Eurasia. Therefore, the delayed remote-responses of atmospheric circulation and climate to the melting of Eurasian snow may be only possible near the melting period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allen RJ, Zender CS (2010) Effects of continental-scale snow albedo anomalies on the wintertime Arctic oscillation. J Geophys Res 115:D23105. https://doi.org/10.1029/2010JD014490

    Article  Google Scholar 

  • Allen RJ, Zender CS (2011a) Forcing of the Arctic Oscillation by Eurasian snow cover. J Clim 24(24):6528–6539

    Article  Google Scholar 

  • Allen RJ, Zender CS (2011b) The role of eastern Siberian snow and soil moisture anomalies in quasi-biennial persistence of the Arctic and North Atlantic Oscillations. J Geophys Res Atmos 116:D16

    Article  Google Scholar 

  • Bamzai AS, Shukla J (1999) Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: an observational study. J Clim 12:3117–3132

    Article  Google Scholar 

  • Barnett TP, Dümenil L, Schlese U, Roeckner E, Latif M (1989) The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci 46(5):661–686

    Article  Google Scholar 

  • Becker BD, Slingo JM, Ferranti L, Molteni F (2001) Seasonal predictability of the Indian summer monsoon: what role do land surface conditions play? Mausam 52(1):175–190

    Google Scholar 

  • Betts AK, Ball JH, Beljaars ACM, Miller MJ, Viterbo PA (1996) The land surface–atmosphere interaction: a review based on observational and global modeling perspectives. J Geophys Res 101:7209–7225

    Article  Google Scholar 

  • Clark MP, Serreze MC, Robinson DA (1999) Atmospheric controls on Eurasian snow extent. Int J Climatol 19:27–40. https://doi.org/10.1002/(SICI)1097-0088(199901)19:1<27::AID-JOC346>3.0.CO;2-N

    Article  Google Scholar 

  • Cohen J, Entekhabi D (1999) Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys Res Lett 26(3):345–348

    Article  Google Scholar 

  • Cohen J, Entekhabi D (2001) The influence of snow cover on Northern Hemisphere climate variability. Atmos Ocean 39(1):35–53

    Article  Google Scholar 

  • Cohen J, Rind D (1991) The effect of snow cover on the climate. J Clim 4(7):689–706

    Article  Google Scholar 

  • Cohen J, Furtado JC, Justin J, Mathew B, David W, Entekhabi D (2014) Linking Siberian snow cover to precursors of stratospheric variability. J Clim 27:5422–5432. https://doi.org/10.1175/JCLI-D-13-00779.1

    Article  Google Scholar 

  • Corti S, Molteni F, Brankovic C (2000) Predictability of snow depth anomalies over Eurasia and associated circulation patterns. Quart J R Meteorol Soc 126:241–262

    Article  Google Scholar 

  • Dai Y, Zeng X, Dickinson RE, Baker I, Bonan G, Bosilovich M, Oleson K (2003) The common land model (CLM). Bull Am Meteorol Soc 84:1013–1023. https://doi.org/10.1175/BAMS-84-8-1013

    Article  Google Scholar 

  • Dash SK, Singh GP, Shekhar MS, Vernekar AD (2005) Response of the Indian summer monsoon circulation and rainfall to seasonal snow depth anomaly over Eurasia. Clim Dyn 24:1–10

    Article  Google Scholar 

  • Dash SK, Parth SP, Panda SK (2006) A study on the effects of Eurasian snow on the summer monsoon circulation and rainfall using a spectral GCM. Int J Climatol 26:1017–1025

    Article  Google Scholar 

  • Delworth TL, Manabe S (1988) The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J Clim 1(5):523–547

    Article  Google Scholar 

  • Delworth TL, Manabe S (1989) The influence of soil wetness on near-surface atmospheric variability. J Clim 2(12):1447–1462

    Article  Google Scholar 

  • Dorigo WA, de Jeu R, Chung D, Parinussa R, Liu Y, Wagner W, Fernández-Prieto D (2012) Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys Res Lett 39:L18405. https://doi.org/10.1029/2012GL052988

    Article  Google Scholar 

  • Dorigo WA et al (2013) Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J. https://doi.org/10.2136/vzj2012.0097

    Google Scholar 

  • Douville H, Royer JF (1996) Sensitivity of the Asian summer monsoon to an anomalous Eurasian snow cover within the Meteo-France GCM. Clim Dyn 12:449–466

    Article  Google Scholar 

  • Entekhabi D, Rodriguez-Iturbe I, Bras RL (1992) Variability in large-scale water balance with land surface–atmosphere interaction. J Clim 5:798–813

    Article  Google Scholar 

  • Fasullo J (2004) A stratified diagnosis of the Indian monsoon—Eurasian snow cover relationship. J Clim 17:1110–1122

    Article  Google Scholar 

  • Findell KL, Eltahir EAB EAB (2003) Atmospheric controls on soil moisture–boundary layer interactions. Part I: framework development. J Hydrometeor 4:552–569

    Article  Google Scholar 

  • Fletcher CG, Kushner PJ, Cohen J (2007) Stratospheric control of the extratropical circulation response to surface forcing. Geophys Res Lett 34:L21802. https://doi.org/10.1029/2007GL031626

    Article  Google Scholar 

  • Gelaro R et al (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30(14):5419–5454

    Article  Google Scholar 

  • Gong G, Entekhabi D, Cohen J (2003) Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. J Clim 16(23):3917–3931

    Article  Google Scholar 

  • Gong G, Entekhabi D, Cohen J (2004) Orographic constraints on a modeled Siberian snow-tropospheric–stratospheric teleconnection pathway. J Clim 17(6):1176–1189

    Article  Google Scholar 

  • Halder S, Dirmeyer PA (2017) Relation of Eurasian snow cover and Indian summer monsoon rainfall: importance of the delayed hydrological effect. J Clim 30(4):1273–1289

    Article  Google Scholar 

  • Hassan AA, Jin S (2014) Lake level change and total water discharge in East Africa Rift Valley from satellite-based observations. Glob Planet Change 117:79–90. https://doi.org/10.1016/j.gloplacha.2014.03.005

    Article  Google Scholar 

  • Henderson GR, Leathers DJ (2010) European snow cover extent variability and associations with atmospheric forcings. Int J Climatol 30:1440–1451. https://doi.org/10.1002/joc.1990

    Google Scholar 

  • Henderson GR, Leathers DJ, Brian H (2013) Circulation response to Eurasian versus North American anomalous snow scenarios in the Northern Hemisphere with an AGCM coupled to a slab ocean model. J Clim 26:1502–1515. https://doi.org/10.1175/JCLI-D-11-00465.1

    Article  Google Scholar 

  • Iijima Y, Masuda K, Ohata T (2007) Snow disappearance in Eastern Siberia and its relationship to atmospheric influences. Int J Climatol 27:169–177. https://doi.org/10.1002/joc.1382

    Article  Google Scholar 

  • Koren V, Schaake J, Mitchell K, Duan QY, Chen F, Baker JM (1999) A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J Geophys Res Atmos (1984–2012) 104(19):569–585

    Google Scholar 

  • Koster RD, Suarez MJ (1996) Energy and water balance calculations in the Mosaic LSM. NASA Tech Memo 9:76

    Google Scholar 

  • Koster RD, Suarez MJ (2001) Soil moisture memory in climate models. J Hydrometeorol 2(6):558

    Article  Google Scholar 

  • Kripalani RH, Kulkarni A (1999) Climatology and variability of historical Soviet snow depth data: some new perspectives in snow—Indian monsoon teleconnections. Clim Dyn 15:475–489

    Article  Google Scholar 

  • Kripalani RH, Singh SV, Vernekar AD, Thapliyal V (1996) Empirical study on Nimbus-7 snow mass and Indian summer monsoon rainfall. Int J Climatol 16:23–24

    Article  Google Scholar 

  • Kripalani RH, Kim BJ, Oh JH, Moon SE (2002) Relationship between Soviet snow and Korean rainfall. Int J Climatol 22:1313–1325

    Article  Google Scholar 

  • Liu YQ, Avissar R (1999) A study of persistence in the land–atmosphere system using a general circulation model and observations. J Clim 12:2139–2153. https://doi.org/10.1175/1520-0442(1999)012<2139:ASOPIT>2.0.CO;2

    Article  Google Scholar 

  • Liu YY, Dorigo WA, Parinussa RM, de Jeu M, Wagner W, McCabe MF, Evans JP, van Dijk AIJM. (2012) Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens Environ 123:280–297. https://doi.org/10.1016/j.rse.2012.03.014

    Article  Google Scholar 

  • Liu D, Wang G, Mei R, Yu Z, Gu H (2014) Diagnosing the strength of land–atmosphere coupling at subseasonal to seasonal time scales in Asia. J Hydrometeor 15:320–339. https://doi.org/10.1175/JHM-D-13-0104.1

    Article  Google Scholar 

  • Matsumura S, Yamazaki K (2012) Eurasian subarctic summer climate in response to anomalous snow cover. J Clim 25(4):1305–1317

    Article  Google Scholar 

  • Matsumura S, Yamazaki K, Tokioka T (2010) Summertime land–atmosphere interactions in response to anomalous springtime snow cover in northern Eurasia. J Geophys Res Atmos (1984–2012) 115(D20):D20107

    Article  Google Scholar 

  • Matsuyama H, Masuda K (1998) Seasonal/interannual variations of soil moisture in the former USSR and its relationship to Indian summer monsoon rainfall. J Clim 11:652–658

    Article  Google Scholar 

  • Meehl GA (1994) Influence of the land surface in the Asian summer monsoon: external conditions versus internal feedbacks. J Clim 7(7):1033–1049

    Article  Google Scholar 

  • Meløysund V, Leira B, Høiseth KV, Lisø KR (2007) Predicting snow density using meteorological data. Meteorol Appl 14(4):413–423

    Article  Google Scholar 

  • Mioduszewski JR, Rennermalm AK, Robinson DA, Wang L (2015) Controls on spatial and temporal variability in northern hemisphere terrestrial snow melt timing, 1979–2012. J Clim 28:2136–2153. https://doi.org/10.1175/JCLI-D-14-00558.1

    Article  Google Scholar 

  • Ohmura A (2001) Physical basis for the temperature-based melt-index method. J Appl Meteorol 40:753–761. https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2.

    Article  Google Scholar 

  • Orth R, Seneviratne SI (2012) Analysis of soil moisture memory from observations in Europe. J Geophys Res 117:D15115. https://doi.org/10.1029/2011JD017366

    Article  Google Scholar 

  • Pal JS, Eltahir EAB (2003) A feedback mechanism between soil–moisture distribution and storm tracks. Quart J Roy Meteor Soc 129:2279–2297

    Article  Google Scholar 

  • Pomeroy JW, Gray DM, Hedstrom NR, Janowicz JR (2002) Prediction of seasonal snow accumulation in cold climate forests. Hydrol Process 16:3543–3558. https://doi.org/10.1002/hyp.1228

    Article  Google Scholar 

  • Proulx RA, Knudson MD, Kirilenko A, Vanlooy AJ, Zhang X (2013) Significance of surface water in the terrestrial water budget: a case study in the Prairie Coteau using GRACE, GLDAS, Landsat, and groundwater well data. Water Resour Res 49:5756–5764. https://doi.org/10.1002/wrcr.20455

    Article  Google Scholar 

  • Robock A, Mu M, Vinnikov K, Robinson D (2003) Land surface conditions over Eurasia and Indian summer monsoon rainfall. J Geophys Res Atmos 108:4131. https://doi.org/10.1029/2002JD002286

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor UEA, Gottschalck J, Mitchell K, Meng CJ, Entin JK (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394

    Article  Google Scholar 

  • Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. J Hydrogeol 15:159–166. https://doi.org/10.1007/s10040-006-0103-7

    Article  Google Scholar 

  • Saito K, Cohen J (2003) The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophys Res Lett 30(6):1302

    Article  Google Scholar 

  • Sankar-Rao M, Lau KM, Yang S (1996) On the relationship between Eurasian snow cover and the Asian summer monsoon. Int J Climatol 16:605–6160

    Article  Google Scholar 

  • Seneviratne SI et al (2006) Soil moisture memory in AGCM simulations: analysis of global land–atmosphere coupling experiment (GLACE) data. J Hydrometeorol 7:1090–1112. https://doi.org/10.1175/JHM533.1

    Article  Google Scholar 

  • Shen X, Kimoto M, Sumi A (1998) Role of land surface processes associated with interannual variability of broad-scale Asian summer monsoon as simulated by the CCSR/NIES AGCM. J Meteorol Soc Jpn 76:217–236

    Article  Google Scholar 

  • Shinoda M (2001) Climate memory of snow mass as soil moisture over central Eurasia. J Geophys Res Atmos 106(D24):33393–33403

    Article  Google Scholar 

  • Singh GP, Oh JH (2005) Study on snow depth anomaly over Eurasia, Indian rainfall and circulations. J Meteorol Soc Jpn 83:237–250

    Article  Google Scholar 

  • Swenson S, Wahr J (2006) Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements. J Hydrometeorol 7:252–270. https://doi.org/10.1175/JHM478.1

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016. https://doi.org/10.1175/1520-0442(2000)013,1000:AMITEC.2.0.CO;2

    Article  Google Scholar 

  • Ueda H, Shinoda M, Kamahori H (2003) Spring northward retreat of Eurasian snow cover relevant to seasonal and interannual variations of atmospheric circulation. Int J Climatol 23:615–629. https://doi.org/10.1002/joc.903

    Article  Google Scholar 

  • Vernekar AD, Zhou J, Shukla J (1995) The effect of Eurasian snow cover on the Indian monsoon. J Clim 8:248–266

    Article  Google Scholar 

  • Vicente-Serrano SM, Grippa M, Le Toan T, Mognard N (2007) Role of atmospheric circulation with respect to the interannual variability in the date of snow cover disappearance over northern latitudes between 1988 and 2003. J Geophys Res 112:D08108. https://doi.org/10.1029/2005JD006571

    Article  Google Scholar 

  • Wang AH, Bohn TJ, Mahanama SP, Koster RD, Lettenmaier (2009) DPMultimodel ensemble reconstruction of drought over the continental United States. J Clim 22(10):2694–2712

    Article  Google Scholar 

  • Wang T, Peng S, Ottlé C, Ciais P (2015) Spring snow cover deficit controlled by intraseasonal variability of the surface energy fluxes. Environ Res Lett 10:024018. https://doi.org/10.1088/1748-9326/10/2/024018

    Article  Google Scholar 

  • Wu WR, Dickinson RE (2004) Time scales of layered soil moisture memory in the context ofland–atmosphere interaction. J Clim 17:2752–2764. https://doi.org/10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2

    Article  Google Scholar 

  • Wu R, Liu G, Zhao P (2014) Contrasting Eurasian spring and summer climate anomalies associated with western and eastern Eurasian spring snow cover changes. J Geophys Res Atmos 119(12):7410–7424

    Article  Google Scholar 

  • Yang S (1996) ENSO–snow–monsoon associations and seasonal–interannual predictions. Int J Climatol 16:125–134

    Article  Google Scholar 

  • Yasunari T, Kitoh A, Tokioka T (1991) Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate—a study with the MRI GCM. J Meteorol Soc Jpn 69(4):473–487

    Article  Google Scholar 

  • Ye K, Lau NC (2017) Influences of surface air temperature and atmospheric circulation on winter snow cover variability over Europe. Int J Climatol 37(5):2606–2619

    Article  Google Scholar 

  • Ye K, Wu R, Liu Y (2015) Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s. J Geophys Res Atmos 120(7):2738–2753

    Article  Google Scholar 

  • Yeh TC, Wetherald RT, Manabe S (1983) A model study of the short-term climatic and hydrologic effects of sudden snow-cover removal. Mon Weather Rev 111:1013–1024

    Article  Google Scholar 

  • Zhang J, Wang WC, Wei J (2008) Assessing land–atmosphere coupling using soil moisture from the global land data assimilation system and observational precipitation. J Geophys Res 113:D17119. https://doi.org/10.1029/2008JD009807

    Article  Google Scholar 

  • Zhang R, Zhang R, Zuo Z (2017) Impact of Eurasian spring snow decrement on East Asian summer precipitation. J Clim 30(9):3421–3437

    Article  Google Scholar 

Download references

Acknowledgements

This study is jointly supported by The Chinese University of Hong Kong—Focused Innovations Scheme (#1907001) and a Hong Kong Research Grants Council Grant (CUHK403612). The appointment of NCL at the Chinese University of Hong Kong is supported by the AXA Research Fund. We are grateful to two anonymous reviewers for their insightful comments on the manuscript and also to the editor for the help with the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunhui Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, K., Lau, NC. Characteristics of Eurasian snowmelt and its impacts on the land surface and surface climate. Clim Dyn 52, 1115–1138 (2019). https://doi.org/10.1007/s00382-018-4180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4180-9

Keywords

Navigation