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ABSTRACT

We consider the task of program synthesis in the presence of a reward function
over the output of programs, where the goal is to find programs with maximal
rewards. We employ an iterative optimization scheme, where we train an RNN
on a dataset of K best programs from a priority queue of the generated programs
so far. Then, we synthesize new programs and add them to the priority queue by
sampling from the RNN. We benchmark our algorithm, called priority queue train-
ing (or PQT), against genetic algorithm and reinforcement learning baselines on a
simple but expressive Turing complete programming language called BF. Our ex-
perimental results show that our simple PQT algorithm significantly outperforms
the baselines. By adding a program length penalty to the reward function, we are
able to synthesize short, human readable programs.

1 INTRODUCTION

Automatic program synthesis is an important task with many potential applications. Traditional
approaches (e.g., Muggleton & de Raedt (1994); Angulin (1987)) typically do not make use of ma-
chine learning and therefore require domain specific knowledge about the programming languages
and hand-crafted heuristics to speed up the underlying combinatorial search. To create more generic
programming tools without much domain specific knowledge, there has been a surge of recent
interest in developing neural models that facilitate some form of memory access and symbolic
reasoning (e.g., Reed & de Freitas (2016); Neelakantan et al. (2016); Kaiser & Sutskever (2016);
Zaremba et al. (2016); Graves et al. (2016)). Despite several appealing contributions, none of these
approaches is able to synthesize source code in an expressive programming language.

More recently, there have been several successful attempts at using neural networks to explicitly
induce programs from input-output examples (Riedel et al., 2016; Bunel et al., 2016; Balog et al.,
2017; Parisotto et al., 2016) and even from unstructured text (Parisotto et al., 2016), but often using
restrictive programming syntax and requiring supervisory signal in the form of ground-truth pro-
grams or correct outputs. By contrast, we advocate the use of an expressive programming language
called BF1, which has a simple syntax, but is Turing complete. Moreover, we aim to synthesize pro-
grams under the reinforcement learning (RL) paradigm, where only a solution checker is required
to compute a reward signal. Furthermore, one can include a notion of code length penalty or exe-
cution speed into the reward signal to search for short and efficient programs. Hence, the problem
of program synthesis based on reward is more flexible than other formulations in which the desired
programs or correct outputs are required during training.

To address program synthesis based on a reward signal, we study two different approaches. The first
approach is a policy gradient (PG) algorithm (Williams, 1992), where we train a recurrent neural
network (RNN) to generate programs one token at a time. Then, the program is executed and scored,
and a reward feedback is sent back to the RNN to update its parameters such that over time better
programs are produced. The second approach is a deceptively simple optimization algorithm called
priority queue training (PQT). We keep a priority queue ofK best programs seen during training and
train an RNN with a log-likelihood objective on the top K programs in the queue. We then sample
new programs from the RNN, update the queue, and iterate. We also compare against a genetic

1https://en.wikipedia.org/wiki/Brainfuck

1

http://arxiv.org/abs/1801.03526v2


algorithm (GA) baseline which has been shown to generate BF programs Becker & Gottschlich
(2017). Surprisingly, we find that the PQT approach significantly outperforms the GA and PG
methods.

We assess the effectiveness of our method on the BF programming language. The BF language is
Turing complete, while comprising only 8 operations. The minimalist syntax of the BF language
makes it easier to generate a syntactically correct program, as opposed to more higher level lan-
guages. We consider various string manipulation, numerical, and algorithmic tasks. Our results
demonstrate that all of the search algorithms we consider are capable of finding correct programs
for most of the tasks, and that our method is the most reliable in that it finds solutions on most
random seeds and most tasks.

The key contributions of the paper include,

• We propose a learning framework for program synthesis where only a reward function
is required during training (the ground-truth programs or correct outputs are not needed).
Further, we advocate to use a simple and expressive programming language, BF, as a bench-
mark environment for program synthesis (see also Becker & Gottschlich (2017)).

• We experiment with a search algorithm using a priority queue and an RNN. We show
that using this priority queue as the training target for the RNN is an effective and stable
approach.

• We propose an experimental methodology to compare program synthesis methods includ-
ing genetic algorithm and policy gradient. Our methodology measures the success rates
of each synthesis method on average and provides a standard way to tune the hyper-
parameters. With this methodology, we find that a recurrent network trained with priority
queue training outperforms the baselines.

The code for this work can be found at
https://github.com/tensorflow/models/tree/master/research/brain_coder.

2 RELATED WORK

Our method shares the same goal with traditional techniques in program synthesis and inductive pro-
gramming (Summers, 1977; Biermann, 1978; Muggleton & de Raedt, 1994; Angulin, 1987). These
techniques have found many important applications in practice, ranging from education to program-
ming assistance (Gulwani, 2010). In machine learning, probabilistic program induction has been
used successfully in many settings, such as learning to solve simple Q&A (Liang et al., 2010), and
learning with very few examples (Lake et al., 2015).

There has been a surge of recent interest in using neural networks to induce and execute programs
either implicitly or explicitly (Graves et al., 2014; Zaremba & Sutskever, 2014; Joulin & Mikolov,
2015; Kaiser & Sutskever, 2016; Kurach et al., 2015; Neelakantan et al., 2016; Reed & de Freitas,
2016; Andreas et al., 2016; Balog et al., 2017; Bhoopchand et al., 2016; Gaunt et al., 2016;
Khanh Dam et al., 2016; Neelakantan et al., 2017; Riedel et al., 2016; Schaechtle et al., 2016;
Zaremba et al., 2016; Miceli Barone & Sennrich, 2017; Beltramelli, 2017; Cai et al., 2017;
Devlin et al., 2017; Hu et al., 2017; Guu et al., 2017; Johnson et al.; Liang et al., 2017; Murali et al.,
2017; Parisotto et al., 2016; Rabinovich et al., 2017; Vigueras et al., 2017; Yin & Neubig, 2017).
For example, there have been promising results on the task of binary search (Nachum et al., 2017a),
sorting an array of numbers (Reed & de Freitas, 2016; Cai et al., 2017), solving simple Q&A
from tables (Neelakantan et al., 2016; 2017), visual Q&A (Andreas et al., 2016; Hu et al., 2017;
Johnson et al.), filling missing values in tables (Devlin et al., 2017), and querying tables (Liang et al.,
2017). There are several key components that highlight our problem formulation in the context of
previous work. First, our approach uses a Turing complete language instead of a potentially re-
stricted domain-specific language. Second, it does not need existing programs or even the stack-trace
of existing programs. Third, it only assumes the presence of a verifier that scores the outputs of hy-
pothesis programs, but does not need access to correct outputs. This is important for domains where
finding the correct outputs is hard but scoring the outputs is easy. Finally, our formulation does not
need to modify the internal workings of the programming language to obtain a differentiable error
signal.
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The PG approach adopted in this paper for program synthesis is closely related to neural architecture
search (Zoph & Le, 2017) and neural combinatorial optimization (Bello et al., 2016), where variants
of PG are used to train an RNN and a pointer network (Vinyals et al., 2015) to perform combinatorial
search. Nachum et al. (2017a) applies PG to program synthesis, but they differ from us in that they
train RNNs that implicitly model a program by consuming inputs and emitting machine instructions
as opposed to explicit programs. Our PG baseline resembles such previous techniques.

The PQT algorithm presented here is partly inspired by Liang et al. (2017), where they use a priority
queue of top-K programs to augment PG with off-policy training. PQT also bears resemblance to
the cross-entropy method (CEM), a reinforcement learning technique which has been used to play
games such as Tetris (Szita & Lörincz, 2006).

Our use of BF programming language enables a comparison between our technique and a concur-
rent work by Becker & Gottschlich (2017) on the use of genetic algorithms for program synthe-
sis in the BF language. However, our method for program synthesis has important benefits over
Becker & Gottschlich (2017) including better performance and the potential for transfer learning,
which is possible with neural networks (Johnson et al., 2016). We also make the observation that
PQT alone is stable and effective, without needing to use PG.

3 APPROACH

We implement a generative model of programs as an RNN that emits a strings of BF language
one character at a time. Figure 2 depicts the RNN model, which enables sampling a sequence of
BF characters in an autoregressive fashion, where one feeds the previous prediction as an input to
the next time step. The input to the first time step is a special START symbol. The RNN stops
when it generates a special EOS symbol, indicating the end of sequence, or if the length of the
program exceeds a pre-specified maximum length. The predictions at each timestep are sampled
from a multinomial distribution (a softmax layer with shared weights across timesteps). The joint
probability of the program sequence is the product of the probabilities of all of the tokens.

Figure 1: An overview of our synthesizer. The synthesizer is an RNN, which generates the program
in an autoregressive fashion.

We study two training algorithms, which are also compatible and can be combined. These are
policy gradient, and priority queue training. We treat the RNN program synthesizer as a policy
π(a1:T ; θ) parametrized by θ, where a1:T ≡ (a1, . . . , aT ) denotes a sequence of T actions, each
of which represents a symbol in the BF langauge (and optionally an EOS symbol). The policy is
factored using the chain rule as π(a1:T ; θ) =

∏

t
π(at | a1:t−1 ; θ) where each term in the product

is given by the RNN as depicted in Figure 2. Typically an RL agent receives a reward after each
action. However in our setup, we cannot score the code until completion of the program (either
by emitting the EOS symbol or by hitting the maximum episode length), and accordingly, only a
terminal reward of r(a1:T ) is provided. The goal is to learn a policy that assigns a high probability
to plausible programs.

3.1 POLICY GRADIENT (PG)

We use the well known policy gradient approach: the REINFORCE algorithm (Williams, 1992).
As suggested by REINFORCE, we optimize the parameters θ to maximize the following expected
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reward objective,
OER(θ) = Eπ(a1:T ; θ)[r(a1:T )] . (1)

We perform stochastic gradient descent in OER to iteratively refine θ. To estimate the gradient of
(1), we draw N Monte Carlo samples from πθ denoted {ai1:Ti

}N
i=1 and compute the gradient of the

policy as,

∇θOER(θ) ≈
1

N

N
∑

i=1

[

(

r(ai1:Ti
)− b

)

Ti
∑

t=1

∇θ log π(a
i

t
| ai1:t−1 ; θ)

]

, (2)

where N is the number of episodes sampled from the policy in one mini-batch, and Ti denotes the
number of actions in the ith episode.

The gradient in Equation (2) is an unbiased estimate of the policy’s true gradient, but it suffers from
high variance in practice. The term b, known as a baseline, subtracted from the rewards serves as
a control variate to reduce the variance of this estimator (Williams, 1992). We use an exponential
moving average over rewards as the baseline.

3.2 PRIORITY QUEUE TRAINING (PQT)

Our key technical contribution in the paper involves training an RNN with a continually updated
buffer of top-K best programs (i.e., a max-reward priority queue of maximum size K), where
duplicates are discarded. The queue is initialized empty, and after each gradient update, it is provided
with new sampled programs, keeping only the programs that fall within the K highest rewarded
programs. We use supervised learning to maximize the probability of the programs in the top-
K buffer denoted {ãk

1:T̃k

}K
k=1 under the current policy. In this way, the RNN and priority queue

bootstrap off each other, with the RNN finding better programs through exploration, and the priority
queue providing better training targets. The objective for PQT is simply log-likelihood in the form,

OTOPK(θ) =
1

K

K
∑

k=1

log π(ãk
1:T̃k

; θ) . (3)

When PG and PQT objectives are combined, their respective gradients can simply be added together
to arrive at the joint gradient. In the joint setting the priority queue component has a stabilizing
affect and helps reduce catastrophic forgetting in the policy. This approach bears some similarity to
the RL approaches adopted by Google’s Neural Machine Translation (Wu et al., 2016) and Neural
Symbolic Machines (Liang et al., 2017).

Entropy exploration. We also regularize the policy by adding an entropy term which aims to
increase the uncertainty of the model and encourage exploration. This prevents the policy from
assigning too much probability mass to any particular sequence, thereby encouraging more diver-
sity among sampled programs. This regularizer has been prescribed initially by Williams & Peng
(1991) and more recently adopted by Mnih et al. (2016); Nachum et al. (2017b). We use the entropy
regularizer for both PG and PQT.

The most general form of the objective can be expressed as the sum of all of these components into
one quantity. We assign different scalar weights to the PG, PQT, and entropy terms, and the gradient
of the overall objective is expressed as,

λER∇θOER(θ) +
λTOPK

K

K
∑

k=1

∇θ log π(ã
k

1:T̃k

; θ) +
λENT

N

N
∑

i=1

Ti
∑

t=1

∇θH [π(A | ai1:t−1 ; θ)] , (4)

where entropy H [p(X)] = −
∑

x∈X
p(x) log p(x). The optimization goal is the maximize (4).

Any specific term can be remove by settings its corresponding λ to 0. When we train vanilla PG,
λTOPK = 0, and when we train with PQT, λER = 0.

Distributed training. To speed up the training of the program synthesizers, we also make use of
an asynchronous distributed setup, where a parameter server stores the shared model parameters for
a number of synthesizer replicas. Each synthesizer replica samples a batch of episodes from its local
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copy of the policy and computes the gradients. Then, the gradients are sent to the parameter server,
which asynchronously updates the shared parameters (Mnih et al., 2016). The replicas periodically
update their local policy with up-to-date parameters from the parameter server. Also, to make the
implementation of distributed PQT simple, each replica has its own priority queue of size K . We
use 32 replicas for all of the experiments.

4 EXPERIMENTS

We assess the effectiveness of our program synthesis setup by trying to discover BF programs. In
what follows, we first describe the BF programming language. Then we discuss the tasks that were
considered, and we present our experimental protocol and results.

4.1 THE BF PROGRAMMING LANGUAGE

BF is a minimalist Turing complete language consisting of only 8 low-level operations, each repre-

sented by a char from +-<>[]., . See Table 1 for operation descriptions. Operations are executed

from left to right and square brackets enable looping, which is the only control flow available in the
language. BF programs operate on a memory tape and internally manipulate a data pointer. The data
pointer is unbounded in the positive direction but is not permitted to be negative. Memory values
are not accessed by address, but relatively by shifting the data pointer left or right, akin to a Turing
machine. Likewise, to change a value in memory, only increment and decrement operations are
available (overflow and underflow is allowed). We include an execution demo in Appendix 6.1 to
further aid understanding of the language.

BF programs are able to read from an input stream and write to an output stream (one int at a
time). This is how inputs and outputs are passed into and out of a BF program in our tasks. In

our implementation , will write zeros once the end of the input stream is reached, and many

synthesized programs make use of this feature to zero out memory.

Memory values are integers, typically 1 byte and so they are often interpreted as chars for string
tasks. In our BF implementation the interpreter is given a task-dependent base B so that each int is
in ZB , i.e., the set of integers modulo base B. By default B = 256, unless otherwise specified.

Table 1: The eight commands in the BF programming language (c.f.
https://esolangs.org/wiki/Brainfuck).

Command Description

> Move the data pointer to the right
< Move the data pointer to the left
+ Increment the value at the current memory position
- Decrement the value at the current memory position
. Output the value at the current memory position
, Get next value from the input stream and write it to the current memory position
[ Jump past the matching ] if the cell under the pointer is 0
] Jump back to the matching [ if the cell under the pointer is nonzero

In our main experiments programs are fixed length, and most characters end up being useless no-ops.
There are many ways to make no-ops in BF, and so it is very easy to pad out programs. For example,

the move left operation < when the data pointer is at the leftmost position is a no-op. Unmatched

braces when strict mode is off are also no-ops. Putting opposite operations together, like +- or

<> , work as no-op pairs.

Notice that there is only one type of syntax error in BF: unmatched braces. BF’s extremely simple
syntax is another advantage for program synthesis. For languages with more complex syntax, syn-
thesizing at the character level would be very difficult due to the fact that most programs will not
run or compile, thus the reward landscape is even sparser. We gave our BF interpreter a flag which
turns off "strict mode" so that unmatched braces are just ignored. We found that turning off strict
mode makes synthesis easier.
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4.2 REWARDS

To evaluate a given program under a task, the code is executed on one or many test cases sampled
from the task (separate execution for each test input). Each test case is scored based on the program’s
output and the scores are summed to compute the final reward for the program.

More formally, let T be the task we want to synthesize code for, and let P be a candidate program.
We treat P as a function of input I so that output Q = P (I). Inputs and outputs are lists of integers
(in base B). In principle for any NP task a polynomial time reward function can be computed. A
trivial reward function would assign 1.0 to correct outputs and 0.0 to everything else. However, such
0/1 reward functions are extremely sparse and non-smooth (i.e., a code string with reward 1.0 may
be completely surrounded by strings of reward 0.0 in edit-distance space). In practice a somewhat
graded reward function must be used in order for learning to take place.

The following formulation presents a possible way to compute rewards for these tasks or other
similar tasks, but our method does not depend on any particular form of the reward (as long as it
is not too sparse). Because all of the tasks we chose in our experiments are in the polynomial time
class, the easiest way for us to score program outputs is just to directly compare to the correct output
Q∗ for a given input I . We use a continuous comparison metric between Q and Q∗ to reduce reward
sparsity.

To evaluate a given program P under task T , a set of test cases is sampled {(I1, Q∗

1), ..., (In, Q
∗

n
)}

from T . We leave open the option for T to produce static test cases, i.e., the same test cases are
provided each time, or stochastic test cases drawn from a distribution each time. In practice, we find
that static test cases are helpful for learning most tasks (see Section 4.3).

For simplicity we define a standardized scoring function S(Q,Q∗) for all our tasks and test cases
(see Appendix 6.2 for details). Total reward for the program is Rtot = ζ

∑n

i=1 S(P (Ii), Q
∗

i
) where

ζ is a constant scaling factor, which can differ across tasks. We use ζ to keep rewards approximately
in the range [−1, 1]. Rtot is given to the agent as terminal reward. When generating variable length
programs we give preference to shorter programs by adding a program length bonus to the total
reward: Rtot + 1− |P | /MaxProgramLength.

If the BF interpreter is running in strict mode and there is a syntax error (i.e., unmatched braces)
we assign the program a small negative reward. We also assign negative reward to programs which
exceed 5000 execution steps to prevent infinite loops. Note that Rtot is the terminal reward for the
agent.

4.3 EXPERIMENTAL SETUP

We assess the effectiveness of our priority queue training method against the following baselines:

• Genetic algorithm (GA) implemented based on Becker & Gottschlich (2017).2 See Ap-
pendix 6.3 for more details regarding our implementation.

• Policy gradient (PG) as described in Section where λTOPK = 0.

• Policy gradient (PG) combined with priority queue training (PQT), where λTOPK > 0.

We are operating under the RL paradigm, and so there is no test/evaluation phase. We use a set of
benchmark coding tasks (listed in Appendix 6.4) to compare these methods, where different models
are trained on each task. Simply the best program found during training is used as the final program
for that task.

In order to tune each method, we propose to carry out experiments in two phases. First, the hy-
perparameters will be tuned on a subset of the tasks (reverse and remove-char). Next, the best
hyperparameters will be fixed, and each synthesis method will be trained on all tasks. To compare
performance between the synthesis methods, we measure the success rate of each method after a
predetermined number of executed programs. More details will be described in Section 4.4.

We tune the hyperparameters of the synthesis methods on reverse and remove-char tasks. We
use grid search to find the best hyperparameters in a given set of possible values. The tun-

2Author’s implementation available at https://github.com/primaryobjects/AI-Programmer
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ing space is as follows. For PG, learning rate ∈ {10−5, 10−4, 10−3} and entropy regularizer
∈ {0.005, 0.01, 0.05, 0.10}. For PQT, learning rate and entropy regularizer are searched in the same
spaces, and we also allow the entropy regularizer to be 0; PQT loss multiplier (λTOPK from Equa-
tion 4) is searched in {1.0, 10.0, 50.0, 200.0}. For GA, population size ∈ {10, 25, 50, 100, 500},
crossover rate ∈ {0.2, 0.5, 0.7, 0.9, 0.95} and mutation rate ∈ {0.01, 0.03, 0.05, 0.1, 0.15}.

For PQT we set K = 10 (maximum size of the priority queue) in all experiments. In early experi-
ments we found 10 is a nice compromise between a very small queue which is too easy for the RNN
to memorize, and a large queue which can dilute the training pool with bad programs.

The best hyperparameters found by grid search for each synthesis method are:

• PG: entropy regularizer = 0.05, learning rate = 10−4.

• PG+PQT: entropy regularizer = 0.01, learning rate = 10−4, λTOPK = 50.0.

• PQT: entropy regularizer = 0.01, learning rate = 10−4, λTOPK = 200.0.

• GA: population size = 100, crossover rate = 0.95, mutation rate = 0.15.

Other model and environment choices. For PG and PQT methods we use the following archi-
tecture: a 2-layer LSTM RNN (Hochreiter & Schmidhuber, 1997) with 35 units in each layer. We
jointly train embeddings for the program symbols of size 10. The outputs of the top LSTM layer are
passed through a linear layer with 8 or 9 outputs (8 BF ops plus an optional EOS token) which are
used as logits for the softmax policy. We train on minibatches of size 64, and use 32 asynchronous
training replicas. Additional hyperparameter values: gradient norm clipping threshold is set at 50,
parameter initialization factor3 is set at 0.5, RMSProp is used as the optimizer, and decay for the
exponential moving average baseline is set at 0.99.

We explored a number of strategies for making test cases. For the reverse task we tried:

1. One random test case of random length.

2. Five random test cases of random length.

3. Five random test cases of lengths 1 through 5.

4. Five static test cases of lengths 1 through 5.

However, solutions were only found when we used static test cases (option 4).

In the experiments below, all programs in each task are evaluated on the same test cases. The test
inputs are randomly generated with a fixed seed before any training happens. By default each task
has 16 test cases, with a few exceptions noted in Appendix 6.4. For the two tuning tasks we continue
to use a small number of hand crafted test cases, and the BF base B = 27 instead of 256.

A potential problem with using test cases for program synthesis is that the synthesized code can
overfit, i.e., the code can contain hard-coded solutions for test inputs. In the experiments below we
also run synthesized code on a large set of held-out eval test cases. These eval test cases are also
randomly generated with a fixed seed, and the total number of test cases (train and eval) for each task
is 1000. Success rates on training test cases and all test cases are reported in Table 3. We do manual
inspection of code solutions in Table 4 to identify overfitting programs, which are highlighted in red.

4.4 RESULTS

In the following, we show success rates on tuning tasks and held-out tasks for all algorithms. Again,
our metric to compare these methods is the success rate of each method at finding the correct pro-
gram after a predetermined maximum number of executed programs. For all tasks, we ran training
25 times independently to estimate success rates. A training run is successful if a program is found
which solves all the test cases for the task. Training is stopped when the maximum number of pro-
grams executed (NPE) is reached, and the run is considered a failure. For tuning, we use maximum
NPE of 5M. For evaluation we use a maximum NPE of 20M.

3Parameter initialization factor is the factor argument for the TensorFlow variable initializer
tf.contrib.layers.variance_scaling_initializer.
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Our genetic algorithm is best suited for generating programs of fixed length, meaning all code strings
considered are of some fixed length preset by the experimenter. In all the experiments presented
below, the EOS token is disabled for all algorithms, so that there are 8 possible code characters.
Program length is 100 characters for all experiments, and the search space size is 8100 ≈ 1090.

In Table 2, we report the success rates from tuning of the genetic algorithm, policy gradient, priority
queue training, and policy gradient with priority queue training. The results for these tuning tasks are
different from the same tasks in Table 3, due to the smaller NPE used in tuning, and the fact that we
tune on a different set of hand-selected test cases. There is also sensitivity of each synthesis method
to initialization, sampling noise, and asynchronous weight updates which accounts for differences
between multiple runs of the same tasks.

Table 2: Number of successes (out of 25) of synthesis methods on tuning tasks when Maximum
Number of Programs Executed (NPE) is 5M.

Task GA PG PQT PG+PQT
reverse 12 2 20 21
remove-char 12 5 5 1

In Table 3, we report the success rates of the same algorithms plus uniform random search. We
include success rates for training and eval test cases. We also do an aggregate comparison between
columns by taking the average at the bottom. As can be seen from the table, PQT is clearly better
than PG and GA according to training and eval averages. PG+PQT is on par with PQT alone. The
eval success rates are lower than the training success rates in many cases due to overfitting programs.

In order to get a sense for how long it takes each method to find programs, we report the average
stopping NPE for each task-method combination in Appendix 6.5.

4.5 SAMPLE PROGRAMS

In this section we have our method generate shortest possible code string. Code shortening, some-
times called code golf, is a common competitive exercise among human BF programmers. We use
PG+PQT to generate programs of variable length (RNN must output EOS token) with a length bonus
in the reward to encourage code simplification (see 4.2). We train each task just once, but with a
much larger maximum NPE of 500M. We do not stop training early, so that the agent can iterate
on known solutions. We find that alternative hyperparameters work better for code shortening, with
λENT = 0.05 and λTOPK = 0.5.

In Table 4 we show simplified programs for coding tasks where a solution was found.

5 DISCUSSION

In this paper, we considered the task of learning to synthesize programs for problems where a re-
ward function is defined. We use an RNN trained with our priority queue training method. We ex-
perimented with BF, a simple Turing-complete programming language, and compared our method
against a genetic algorithm baseline. Our experimental results showed that our method is more stable
than vanilla policy gradient or a genetic algorithm.

That PQT works as a standalone search algorithm is surprising, and future work is needed in order
to better explain it. We can speculate that it is implementing a simple hill climbing algorithm where
the buffer stores the best known samples, thereby saving progress, while the RNN functions as an
exploration mechanism. Even more surprising is that this algorithm is able to bootstrap itself to a
solution starting from an empty buffer and a randomly initialized RNN. We believe that our coding
environment complements the PQT algorithm, since finding code with non-zero reward through
purely random search is feasible.
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Table 3: Number of successes (out of 25) of synthesis methods on all tasks when the maximum
number of programs executed (max NPE) is 20M. In each cell we report two numbers separated by
a forward slash. The number of successes on training test cases is first, and the number of successes
on held-out eval test cases is second. For many task-method combinations no program was found
which satisfies the training cases, and we mark these cells with just a dash.

Task Uniform GA PG PQT PG+PQT

reverse 2 / 2 15 / 15 3 / 2 20 / 20 17 / 17
remove-char - 21 / 0 2 / 0 18 / 0 10 / 0
count-char - 4 / 4 - - -
add 2 / 2 19 / 18 6 / 6 25 / 25 25 / 25
bool-logic - 19 / 18 19 / 19 15 / 15 17 / 17
print-hello - 12 / 16 - 25 / 25 25 / 25
echo-twice - 11 / 2 - 3 / 1 5 / 1
echo-thrice - - - - -
copy-reverse - - - - -
zero-cascade - 1 / 0 - 21 / 1 22 / 0
cascade - - - 11 / 1 9 / 0
shift-left 13 / 0 25 / 2 13 / 2 25 / 0 25 / 0
shift-right - 3 / 0 - - -
riffle - - - - -
unriffle - 4 / 0 - 8 / 0 8 / 0
middle-char - 1 / 0 - 17 / 0 22 / 0
remove-last 1 / 1 19 / 13 - 25 / 9 25 / 5
remove-last-two - 2 / 0 - 25 / 9 25 / 8
echo-alternating - 4 / 0 - 25 / 0 25 / 0
echo-half - - - - 1 / 0
length 22 / 10 25 / 5 17 / 2 25 / 12 25 / 10
echo-second-seq 25 / 10 25 / 5 25 / 9 25 / 8 25 / 7
echo-nth-seq - 13 / 13 - 24 / 23 25 / 25
substring - - - - -
divide-2 - - - - -
dedup - - - - -

Average 2.5 / 1.0 8.6 / 4.3 3.3 / 1.5 13.0 / 5.7 12.9 / 5.4
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6 APPENDIX

6.1 BF EXECUTION DEMO

Figure 2: In the following figure we step through a BF program that reverses a given list. The target
list is loaded into the input buffer, and the programs output will be written to the output buffer. Each
row depicts the state of the program and memory before executing that step. Purple indicates that
some action will be taken when the current step is executed. We skip some steps which are easy to
infer. Vertical ellipses indicate the continuation of a loop until its completion.

6.2 TEST CASE SCORING

Our implementation of S(Q,Q∗) is computed from a non-symmetric distance function d(Q,Q∗)
which is an extension of Hamming distance H(list1, list2) for non-equal length lists (note that argu-
ments to H must be the same length). Hamming distance provides additional information, rather
than just saying values in Q and Q∗ are equal or not equal. Further since BF operates on values only
through increment and decrement operations this notation of distance is very useful for conveying to
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the agent information about how many inc or dec ops to use in various places. This serves to make
the reward space smoother and less sparse.

We want a distance of 0 to result in the maximum score and a large distance to result in a small or
negative score. Thus we define:

S(Q,Q∗) = d(∅, Q∗)− d(Q,Q∗)

where ∅ is the empty list, l = |Q|, l∗ = |Q∗|, and B is the integer base (number of possible ints at
each position). We define our distance function:

d(Q,Q∗) =

{

H(Q,Q∗

1:l) +B · (l∗ − l) if l ≤ l∗

H(Q1:l∗ , Q
∗) +B · (l − l∗) otherwise

Essentially d(Q,Q∗) adds maximum char distance to the Hamming distance for each missing po-
sition or each extra position, depending on whether Q is shorter or longer than Q∗ respectively.
S(Q,Q∗) subtracts the distance d(Q,Q∗) from the distance of an empty list to Q∗, which is equal
to B |Q∗|.

6.3 GENETIC ALGORITHM

A genetic algorithm (GA) simulates sexual reproduction in a population of genomes in order to
optimize a fitness function. To synthesize BF programs, we let a genome be one code string. The
GA is initialized with a population of randomly chosen code strings. For each iteration a new
population of children is sampled from the existing population. Each new population is called a
generation.

GA samples a new population from the current population with 3 steps: 1) parent selection, 2)
mating, and 3) mutation. Many algorithms have been developed for each of these steps which have
varying effects on the GA as a whole. We describe our algorithm for each step:

1. Parent selection: Randomly sample a set of parents from the population. We use roulette
selection (a.k.a. fitness proportionate selection) where parents are chosen with probability
proportional to their fitness.

2. Mating: Choose pairs of parents and perform an operation resulting in two children to
replace the parents. We use single point crossover where a position in the genome (code
string) for the first parent is sampled uniformly and the two parents’ genetic material is
swapped after that point to create two new children. Crossover is performed with probabil-
ity pcrossover.

3. Mutation: With some probability make small random modifications to each child. We use
the primaryobjects mutation function. This function iterates through each code token and
with probability pmutate chooses among 4 possible mutation operations to apply: insert
random token, replace with random token, delete token, shift and rotate either left or right.
When inserting the last token is removed, and when deleting a random token is added at
the end so that none of the mutation operations change the number of tokens in the list.

We tune pmutate, pcrossover, and the population size (see Experimental Setup). For each task, the
genome size is set to the maximum code length, since GA operates on fixed length genomes.
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6.4 CODING TASKS

Table 5: List of coding tasks with descriptions. For any task, a BF program takes a single list as input,
and outputs a list. Unless otherwise state base B = 256, where each value can be considered to be
an ASCII character for string tasks. Some tasks are given a smaller base so that code execution is
less likely to timeout (code involving moving memory and arithmetic often needs to iterate through
all values between some target value and 0).

Task Description

reverse Return input in reverse order.
remove-char Remove all 1s from the input and return the result.
count-char Count number of occurrences of 1 in the input.
add Return the sum (modulo 256) of two input numbers. There are 9 hand

picked test cases.
bool-logic Read in 3 bools x, y, z and return f(z, y, z) = xz̄ + ȳz̄ + x̄yz. B = 2.

There are 8 test cases, one for each of the possible 3 bit combinations.
print-hello Return ‘HELLO’. Base B = 27, where ‘A’ = 1, ..., ‘Z’ = 26, and EOS = 0.

The target string is the sole test case.
echo-twice Return the input repeated twice.
echo-thrice Return the input repeated three times consecutively.
copy-reverse Return the input, followed by the input reversed, and then followed by the

original input.
zero-cascade For all input values, return the value at index i (0-indexed) followed by i 0s.
cascade For all input values, return the value at index i repeated i+ 1 times

(0-indexed). B = 20.
shift-left Circular shift the input left, so that the first value is last.
shift-right Circular shift the input right, so that the last value is first.
riffle For input of length N , return the values reorded by index: (N − 1), 0,

(N − 2), 1, (N − 3), 2, ... Base B = 20.
unriffle Inverse of the riffle function. B = 20.
middle-char For input of length N , return the value at position floor(N/2).
remove-last Remove the last character from the list. B = 20.
remove-last-two Remove the last two characters from the list. B = 10.
echo-alternating Return every even indexed value, followed by every odd indexed value.

B = 20.
echo-half Return the first half of the input.
length Return the length of the list.

echo-nth-seq For M input sequences each separated by a 0, return the nth sequence
(1-indexed), where n is given as the first value in the input.

substring Return a sub-range of the input list, given a starting index i and length l.
divide-2 Return input value divided by two (integer division).
dedup Return input list, in which all duplicate adjacent values removed.
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6.5 AVERAGE NPE

Table 6: Average number of programs executed (NPE) in thousands of programs. These results are
from the same experiments reported in Table 3. For each task-method combination, the experiment
was run 25 times, and we report the average NPE at which training completed. When a program
is never found during a run, the NPE for that run is the maximum of 20M. Column averages are
reported in the last row (smaller NPE means the method is faster on average).

Task Uniform GA PG PQT PG+PQT
reverse 19,293 10,944 19,026 8,084 10,073
remove-char 20,000 8,544 18,982 12,761 15,503
count-char 20,000 17,493 20,000 20,000 20,000
add 19,128 7,951 17,119 5,875 5,795
bool-logic 20,000 8,702 14,569 13,979 13,185
print-hello 20,000 13,412 20,000 3,336 2,952
echo-twice 20,000 13,710 20,000 18,656 17,283
echo-thrice 20,000 20,000 20,000 20,000 20,000
copy-reverse 20,000 20,000 20,000 20,000 20,000
zero-cascade 20,000 19,293 20,000 7,335 7,184
cascade 20,000 20,000 20,000 13,674 15,808
shift-left 13,837 2,044 14,897 3,075 2,307
shift-right 20,000 18,780 20,000 20,000 20,000
riffle 20,000 20,000 20,000 20,000 20,000
unriffle 20,000 17,945 20,000 16,993 16,978
middle-char 20,000 19,734 20,000 17,311 14,375
remove-last 19,975 7,753 20,000 4,689 5,237
remove-last-two 20,000 18,666 20,000 5,642 5,446
echo-alternating 20,000 17,960 20,000 6,297 6,410
echo-half 20,000 20,000 20,000 20,000 19,664
length 8,998 1,153 11,769 1,465 852
echo-second-seq 1,332 27 1,504 501 356
echo-nth-seq 20,000 13,394 20,000 11,387 10,423
substring 20,000 20,000 20,000 20,000 20,000
divide-2 20,000 20,000 20,000 20,000 20,000
dedup 20,000 20,000 20,000 20,000 20,000

Average 18,560 14,519 18,380 12,734 12,686
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