Skip to main content

Advertisement

Log in

Improvement of economic traits and reduction of greenhouse gas emissions in sheep and goats in Central Asia

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

In central Asian countries, sheep (Ovis aries) and goats (Capra hircus) represent a key economic resource for millions of people living in rural communities and, at the same time, a critical source of greenhouse gas (GHG) emissions. This study aims to estimate GHG emissions of several economic traits of sheep and goats and investigate sustainable mitigation strategies. It advances beyond previous studies by calculating the GHG emissions of traits of economic importance rather than reporting average animal emission and can thus provide insights for creating better-targeted mitigation strategies. In dairy sheep in Tajikistan, the emission intensity (EI) decreased from 62.4 to 56.7 kg CO2-eq kg−1 of protein as the production of milk increased by 20%. In meat goats raised in Turkmenistan, the EI decreased by 2.6 kg CO2-eq kg−1 of protein when simulating an increase in meat production of + 20%. Improving female fertility by 10% scaled down the EI of meat sheep in Uzbekistan by 36 kg CO2-eq kg−1 of protein. The improvement of meat and milk productions, female fertility, and litter size and the reduction of mortality, and female culling can reduce the emission intensity of sheep and goats globally. Thus, genetic improvement of economic traits is an important global mitigation tool. Furthermore, improvement of national and international sheep and goat strategies can provide policymakers with valuable information to develop regional and global mitigation actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aaheim A, Wei T, Romstad B (2016) Conflicts of economic interests by limiting global warming to +3°C. Mitig Adapt Strateg Glob Chang 1–18. https://doi.org/10.1007/s11027-016-9718-8

  • Abdybekova A, Sultanov A, Karatayev B, Zhumabayeva A, Shapiyeva Z, Yeshmuratov T, Toksanbayev D, Shalkeev R, Torgerson PR (2015) Epidemiology of echinococcosis in Kazakhstan: an update. J Helminthol 89:647–650. https://doi.org/10.1017/S0022149X15000425

    Article  Google Scholar 

  • Arrébola F, Sánchez M, López MD, Rodríguez M, Pardo B, Palacios C, Abecia JA (2016) Effects of weather and management factors on fertility after artificial insemination in Florida goats: a ten-year study. Small Rumin Res 137:47–52

    Article  Google Scholar 

  • Bouquet A, Venot E, Laloë D, Forabosco F, Fogh A, Pabiou T, Moore K, Eriksson JÅ, Renand G, Phocas F (2011) Genetic structure of the European Charolais and Limousin cattle metapopulations using pedigree analyses. J Anim Sci 89:1719–1730

    Article  Google Scholar 

  • Compton CWR, Heuer C, Thomsen PT, Carpenter TE, Phyn CVC, McDougall S (2017) Invited review: a systematic literature review and meta-analysis of mortality and culling in dairy cattle. J Dairy Sci 100:1–16. https://doi.org/10.3168/jds.2016-11302

    Article  Google Scholar 

  • FAO (2014) Europe and Central Asia food and agriculture. FAO Stat Yearb 1:130

    Google Scholar 

  • FAOSTAT (2017) FAOSTAT. In: Food agric. organ. United Nations. http://faostat3.fao.org/home/E. Accessed 11 Nov 2017

  • Finkbeiner M, Inaba A, Tan R, Christiansen K, Klüppel HJ (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11:80–85. https://doi.org/10.1065/lca2006.02.002

    Article  Google Scholar 

  • Flachowsky G, Gruen M, Meyer U (2013) Feed-efficient ruminant production: opportunities and challenges. J Anim Feed Sci 22:177–187

    Article  Google Scholar 

  • Flysjö A, Cederberg C, Strid I (2008) LCA-databas för konventionella fodermedel - miljöpåverkan i samband med produktion. SIK-Institutet för Livsmed och Biotek 772:125

    Google Scholar 

  • Forabosco F, Chitchyan Z, Mantovani R (2017) Methane, nitrous oxide emissions and mitigation strategies for livestock in developing countries: a review. S Afr J Anim Sci 47:268–280. https://doi.org/10.4314/sajas.v47i3.3

  • Gerber PJ, Steinfeld H, Henderson B et al (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food Agric Organ United Nations 1:1–139

    Google Scholar 

  • Hayes BJ, Lewin HA, Goddard ME (2013) The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet 29:206–214. https://doi.org/10.1016/j.tig.2012.11.009

    Article  Google Scholar 

  • Henderson B, Falcucci A, Mottet A, Early L, Werner B, Steinfeld H, Gerber P (2017) Marginal costs of abating greenhouse gases in the global ruminant livestock sector. Mitig Adapt Strateg Glob Chang 22:199–224

    Article  Google Scholar 

  • Henderson B, Golub A, Pambudi D, et al (2018) The power and pain of market-based carbon policies: a global application to greenhouse gases from ruminant livestock production. Mitig Adapt Strateg Glob Chang 23:349–369

  • Herrero M, Havlík P, Valin H et al (2013) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci 110:20888–20893

    Article  Google Scholar 

  • Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, Wirsenius S, Hristov AN, Gerber P, Gill M, Butterbach-Bahl K, Valin H, Garnett T, Stehfest E (2016) Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 6:452–461. https://doi.org/10.1038/nclimate2925

    Article  Google Scholar 

  • Hristov AN, Oh J, Lee C et al (2013) Mitigation of greenhouse gas emissions in livestock production—a review of technical options for non-C02 emissions. FAO Anim Prod Health 177:226

    Google Scholar 

  • Iliasov S, Yakimov V (2009) The Kyrgyz Republic’s second national communication to the United Nations Framework Convention

  • IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories—volume 4: agriculture, forestry and other land use. Intergov Panel Clim Chang 4:678

    Google Scholar 

  • IPCC (2007) Climate change 2007. Nature 446:727–728. https://doi.org/10.1038/446727a

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014—impacts, adaptation and vulnerability: regional aspects. Intergovernmental panel on climate change. Cambridge University Press

  • Klöpffer W (2012) The critical review of life cycle assessment studies according to ISO 14040 and 14044. Int J Life Cycle Assess 17:1087–1093. https://doi.org/10.1007/s11367-012-0426-7

    Article  Google Scholar 

  • Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM (2014) Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J Dairy Sci 97:3231–3261. https://doi.org/10.3168/jds.2013-7234

    Article  Google Scholar 

  • Kolseth AK, D’Hertefeldt T, Emmerich M, Forabosco F, Marklund S, Cheeke TE, Hallin S, Weih M (2015) Influence of genetically modified organisms on agro-ecosystem processes. Agric Ecosyst Environ 214:96–106

    Article  Google Scholar 

  • Kuipers A, Rozstalnyy A, Keane G (2013) Cattle Husbandry in Eastern Europe and China: structure, development paths and optimization. Wageningen Academic Publishers, Wageningen

  • Lopez-Sebastián A, Coloma MA, Toledano A, Santiago-Moreno J (2014) Hormone-free protocols for the control of reproduction and artificial insemination in goats. Reprod Domest Anim 49:22–29

    Article  Google Scholar 

  • Macías F, Camps Arbestain M (2010) Soil carbon sequestration in a changing global environment. Mitig Adapt Strateg Glob Chang 15:511–529. https://doi.org/10.1007/s11027-010-9231-4

    Article  Google Scholar 

  • Marino R, Atzori ASS, D’Andrea M et al (2016) Climate change: production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Rumin Res 135:50–59. https://doi.org/10.1016/j.smallrumres.2015.12.012

    Article  Google Scholar 

  • Mottet A, Opio C, Falcucci A, Tempio G et al (2017) Global livestock environmental assessment mondel. Ver. 2.0, Manual. Food and agriculture organization of the United Nations, Rome

    Google Scholar 

  • Opio C, Gerber P, Mottet A et al (2013) Greenhouse gas emission from ruminant supply chains: a global life cycle assessment. Food and agriculture organization of the United Nations, Rome

    Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, et al (2014) Climate change 2014: synthesis report. Contribution of WOrking Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC

  • Robinson S, Wiedemann C, Michel S, Zhumabayev Y, Singh N (2012) Pastoral tenure in Central Asia: theme and variation in the five former soviet republics. In: Squires V (ed) Rangeland stewardship in Central Asia: balancing improved livelihoods, biodiversity conservation and land protection. Springer, Dordrecht, pp 239–274

    Chapter  Google Scholar 

  • Rupp R, Mucha S, Larroque H, McEwan J, Conington J (2016) Genomic application in sheep and goat breeding. Anim Front 6:39–44. https://doi.org/10.2527/af.2016-0006

    Article  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar TD, et al (2006) Livestock’s long shadow: environmental issues and options. Food Agric. Organiz. United Nations, Rome

  • UNFCCC (2017) National inventory submissions 2017. In: United Nations Framew. Conv. Clim. Chang. http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/10116.php. Accessed 11 Nov 2017

  • Westhoek H, Rood T, van den Berg M, et al (2011) The protein puzzle: The consumption and production of meat, dairy and fish in the European Union. Netherlands Environmental Assessment Agency 1:1–220

  • Wint W, Robinson R (2007) Gridded livestock of the world. Food and Agriculture Organization of the United Nations, Rome

  • You L, Wood-Sichra U, Fritz S, et al (2014) Spatial production allocation model (SPAM) 2005 beta version. International Food Policy Research Institute, Washington, DC, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Forabosco.

Appendices

Appendix 1

Table 5 Flock structure of dairy and meat sheep and goats in two production systems in Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan

Appendix 2

Table 6 Phenotypic traits and feed composition of the ratio for sheep and goats in Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forabosco, F., Negrini, R. Improvement of economic traits and reduction of greenhouse gas emissions in sheep and goats in Central Asia. Mitig Adapt Strateg Glob Change 24, 129–146 (2019). https://doi.org/10.1007/s11027-018-9801-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-018-9801-4

Keywords

Navigation