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Two More Datasets Available

TheFind.com
Large set of products (Y6GB compressed)

For each product
Attributes
Related products
Craigslist
About 3 weeks of data (~7.5GB compressed)

Text of posts, plus category metadata
e.g., match buyers and sellers



How big is the Web?

How big is the Web?
Technically, infinite
Much duplication (30-40%)

Best estimate of “unique”
static HTML pages comes from

search engine claims
Google = 8 billion(?), Yahoo = 20 ;000
billion .

1997 1998 1999 2000 2001 2002

source: NEC Research, 1DC
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Web as a Graph

| teach a class
on Networks.

Networks
Course:

/ We have a
class blog
Networks
/ Class Blog:
This blog post

is about
Microsoft

/ Microsoft

Home Page

o
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Web as a Graph

| teach a class
on Networks

~ Networks
/ \ Course:

We have a
class blog
Networks
}\ Class Blog:
This blog post

is about
Microsoft

% Microsoft
Home Page

In early days of the Web links were
Today many links are
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Directed graphs

Two types of directed graphs:

Has no cycles: if u can reach v,
then v can not reach u

Any node can reach any node
via a directed path

Any directed graph can be
expressed in terms of these
two types
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Strongly connected component

(SCC) is a set
of nodes S so that:

Every pair of nodes in S can reach each other

There is no larger set containing S with this
property
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Graph structure of the Web

Take a large snapshot of the web and try to
understand how it’s SCCs “fit” as a DAG.

Say want to find SCC containing specific node v?

Observation:
Out(v) ... nodes that can be reachable from v (BFS out)
SCC containing v:
= Out(v, G) N In(v, G)
= Out(v, G) N Out(v, G)
where G is G with directions of all edge flipped
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[Broder et al., ‘00]

Graph structure of the Web

There is a giant SCC
Broder et al., 2000:

Giant weakly connected component:

SCC distribution WCC distribution
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[Broder et al., ‘00]

Bow-tie structure of the Web

OO

~——— Disconnected components

250 million webpages, 1.5 billion links [Altavista]

1/26/10 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 10



[Albert et al., ‘99]

Diameter of the Web
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Diameter (average directed shortest path length) is 19 (in 1999)
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[Broder et al., ‘00]

Diameter of the Web

Average distance:
75% of time there is no directed
path from start to finish page

Follow in-links (directed): 16.12

Follow out-links (directed): 16.18
Undirected: 6.83

Diameter of SCC (directed):
At least 28
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[Broder et al., ‘00]

Degree distribution on the Web

In-degree (May 99, Oct 99) distr.
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Degrees in real networks

Take real network plot a histogram of p, vs. k
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Degrees inreal networks (2)

Plot the same data on log-log axis:
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Exponential tail vs. Power-law talil
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Power law degree exponents

1/26/10

Web graph [Broder et al. 00]:
a,=2.1,0,,=24
Autonomous systems [Faloutsos

et al. 99]:
oa=2.4

Actor collaborations [Barabasi-

Albert 00]:
o=2.3

Citations to papers [Redner 98]:

o=3

Online social networks [Leskovec

et al. 07]:

o=2
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Power-law network

(Erdos-Renyi random graph)

Degree e

distribution is unction s

Power-law scale free if:
Degree distribution is Binomial J(ax) = c f(x)
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Ranking nodes on the graph

Web pages are not equally “important”

WWW.joe-schmoe.com v www.stanford.edu

Since there is big diversity in the
connectivity of the
webgraph we can
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Links as votes

First try:
Page is more important if it has more links
In-coming links? Out-going links?

Think of in-links as votes:

www.stanford.edu has 23,400 inlinks

wwWw.joe-schmoe.com has 1 inlink

Are all in-links are equal?

Links from important pages count more
Recursive question!
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Simple recursive formulation

Each link’s vote is proportional to the

of its source page
If page P with importance x has n out-links,
each link gets votes
Page P’s own importance is the sum of the
votes on its in-links

1/26/10 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining



Simple “flow"” model

The web in 1839

y =y/2+a/2
@ a=y/[2+m
Y m=alj2
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S

1/26/10

olving the flow equations

3 equations, 3 unknowns, no constants
No unique solution
All solutions equivalent modulo scale factor
Additional constraint forces uniqueness
y+ta+tm=1
yv=2/5,a=2/5 m=1/5
Gaussian elimination method works for small

examples, but we need a better method for
large web-size graphs
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Matrix formulation

Matrix M has one row and one column for each
web page
Suppose page j has n out-links
If j =i, then M;; = 1/n
else M;;=0
M is a column stochastic matrix

Columnssumto 1
Suppose r is a vector with one entry per web

page
r. is the importance score of page i
Call it the rank vector
Ir| =1
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Example

Suppose page j links to 3 pages, including :
J

T~ 1/3
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Eigenvector formulation

The flow equations can be written

So the rank vector is an eigenvector of the
stochastic web matrix

In fact, its first or principal eigenvector, with
corresponding eigenvalue 1
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y =y/2+a/2
a=y/[2+m
m=a/2
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Power Iteration method

Simple iterative scheme (aka )
Suppose there are N web pages
Initialize: r% = [1/N,....,1/N]"
Iterate: r**1 = MrX
Stop when |rkl-rk| <¢
%], = D1<ien | %] is the L1 norm
Can use any other vector norm e.g., Euclidean
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Power Iteration Example

Power iteration: ~ vI
v

Set r=1/n

r.:Ej M..r.

A MS
Y2 0
0 1
Y2 0

1)) MS| o
And iterate °-®

Example:
y 1/3 13 5/12 3/8 2/5
a = /3 12 13 1124 ... 2/5

m 1/3  1/6 1/4  1/6 1/5
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Random Walk Interpretation

Imagine a

At any time t, surfer is on some page P

At time t+1, the surfer follows an outlink from P
uniformly at random

Ends up on some page Q linked from P
Process repeats indefinitely
Let p(t) be a vector whose ith component is

the probability that the surfer is at page i at
time t

p(t) is a probability distribution on pages
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The stationary distribution

Where is the surfer at time t+17?

Follows a link uniformly at random
p(t+1) = Mp(t)
Suppose the random walk reaches a state
such that p(t+1) = Mp(t) = p(t)
Then p(t) is called a for the
random walk
Our rank vector r satisfies r = Mr

So it is a stationary distribution for the random
surfer
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Existence and Uniqueness

A central result from the theory of random walks (aka
Markov processes):

For graphs that satisfy certain conditions, the

stationary distribution is unique and eventually
will be reached no matter what the initial

probability distribution at time t = 0.
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Problems with the “flow” model

Some pages are “dead ends” \ >//
(have no out-links)

Such pages cause importance
to leak out

Spider traps (all out links are
within the group)

Eventually spider traps absorb all importance
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Spider traps

A group of pages is a if there are
no links from within the group to outside the
group

Random surfer gets trapped
Spider traps violate the conditions needed for
the random walk theorem
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Spider traps

Power iteration:

And iterate

Example:

Yy 1 1

a = 1 Y
m 1 3/2

>
al

%
iz
7/4

Qe

y!

A

MS

5/8 0
3/8 .. 0
2 3
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Y Y 0
Y2 0 0
0 %) 1
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Solution: Random teleports

1/26

/10

The Google solution for spider traps
At each time step, the random surfer has two
options:

With probability 3, follow a link at random

With probability 1-f3, jump to some page uniformly
at random

Common values for  are in the range 0.8 t0 0.9
Surfer will teleport out of spider trap within a
few time steps



Random teleports (f = 0.8)

y [1/2
a |1/2

0.8%*

1/21/2 0
0812 0 0

1/26/10

0 172 1

1/2
1/2

+ 0.2

y

1/3
+0.2% |1/3
1/3

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y |7/15 715 1/15
7/15 1/15 1/15
m|1/15 7/15 13/15

Qo
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Random teleports (f = 0.8)

ﬁ 1/21/2 0 1/3 1/3 1/3
@ 0812 0 0| +902(1/31/31/3

0 172 1 1/3 1/3 1/3

y |7/15 715 1/15
7/15 1/15 1/15

@  Mesoft m|1/15 7/15 13/15

y 1 1.00 0.84 0.776 7/11
a = 1 0.60 0.60 0.536 ... 5/11
m 1 1.40 1.56 1.688 21/11

o V)
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Dead ends

Power iteration:

And iterate

Example:

Yy 1 1
a = 1 Y
m 1 Iz

1/26/10 Jure

%4
Z
7

~
o
G

y!

A

MS

5/8 0
3/8 0
Ya 0
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Y! A MS
Y5 Y5 0
Y2 0 0
0 Y 0
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Dealing with dead-ends

Teleport

Follow random teleport links with probability 1.0
from dead-ends

Adjust matrix accordingly
Prune and propagate
Preprocess the graph to eliminate dead-ends
Might require multiple passes
Compute page rank on reduced graph

Approximate values for deadends by propagating
values from reduced graph



Matrix formulation

Suppose there are N pages

Consider a page j, with set of outlinks O(j)
We have M;; = 1/]O(j)| when j—iand M; =0
otherwise

The random teleport is equivalent to

adding a from j to every other page with
probability (1-f)/N

reducing the probability of following each outlink from
1/10(j)| to B/10())|

Equivalent: tax each page a fraction (1-p) of its score and
redistribute evenly
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Page Rank

1/26

/10

Construct the N X N matrix A as follows

A; = BM; + (1-B)/N
Verify that A is a stochastic matrix
The r is the principal
eigenvector of this matrix

satisfying r = Ar
Equivalently, r is the stationary distribution of
the random walk with teleports



Computing page rank

Key step is matrix-vector multiplication
rhew — Arold

Easy if we have enough main memory to
hold A, rold pnew

Say N =1 billion pages
We need 4 bytes for each entry (say)
2 billion entries for vectors, approx 8GB
Matrix A has N2 entries

10%8 is a large number!



Rearranging the equation

r = Ar, where
= pBM; + (1-B)/N
r = El<j<N AIJ rj
M= E1<J<N [BM;; + (1- B)/N] r,
=P El<j<N J+ (1 [3 /N El<_|<N J
=B Digen M+ (1-B)/N, since [r| =1
r=pMr + [(1-[3)/N],\I

where [x] is an N-vector with all entries x




Sparse matrix formulation

We can rearrange the page rank equation:
r=BMr + [(1-)/N]
[(1-B)/N], is an N-vector with all entries (1-f3)/N
M is a sparse matrix!

10 links per node, approx 10N entries
So in each iteration, we need to:

Compute r"e¥ = Mrold

Add a constant value (1-)/N to each entry in r"e¥



Sparse matrix encoding

Encode sparse matrix using only nonzero
entries

Space proportional roughly to number of links
say 10N, or 4*10*1 billion = 40GB
still won’t fit in memory, but will fit on disk

0 3 1,5, 7
5 17,64, 113, 117, 245
2 2 13, 23




Basic Algorithm

Assume we have enough RAM to fit r"e%, plus
some working memory

Store r°d and matrix M on disk

Basic Algorithm:
Initialize: ro'd = [1/N],
Iterate:

: Perform a sequential scan of M and r°ld to
update rmew

Write out r"eW to disk as r°'d for next iteration

Every few iterations, compute |r"eW-rold| and stop if it is
below threshold

Need to read in both vectors into memory



Update step

Initialize all entries of r"®V to (1-$)/N
For each page p (out-degree n):
Read into memory: p, n, dest,,...,dest,, ro'd(p)
forj=1..n:
rmew(dest;) += p*rold(p)/n

rnew src degree destination rotd
0 0 3 [1,5,6 )
2 1 4 17, 64, 113, 117 2
3 2 2 (13,23 y
4
5 )
6 6




Analysis

In each iteration, we have to:
Read r°'d and M
Write r"®W back to disk
1O Cost=2]|r| + |M|
What if we had enough memory to fit both
rew and rold?
What if we could not even fit r"®¥ in memory?

10 billion pages



Block-based update algorithm

—

N

(@) JF >3

rn ew

SIrc

degree destination

rOld

0 4 0,1,3,5
1 2 0,5
2 2 3,4

AL wWODN-0



Analysis of Block Update

Similar to nested-loop join in databases

Break r"¢" into k blocks that fit in memory

Scan M and r°'@ once for each block
k scans of M and reld

kK(IM[ + [r[)+ [r] =k[M] + (k+1)]r]
Can we do better?
Hint: M is much bigger than r (approx 10-20x),
so we must avoid reading it k times per
Iiteration



Block-Stripe Update algorithm

—_—

N

(&) JF -3

rn ew

SIc

degree destination

rOld

0 4 0, 1
1 3 0
2 2 1
0 4 3
2 2 3
0 4 5
1 3 5
2 2 4

AL wWODN-0



Block-Stripe Analysis

Break M into stripes

Each stripe contains only destination nodes in the
corresponding block of rnew

Some additional overhead per stripe

But usually worth it
Cost per iteration

IM|(1+€) + (k+1)|r]



