Webgraph structure and PageRank

CS345a: Data Mining Jure Leskovec and Anand Rajaraman Stanford University

Two More Datasets Available

- TheFind.com
 - Large set of products (~6GB compressed)
 - For each product
 - Attributes
 - Related products
- Craigslist
 - About 3 weeks of data (~7.5GB compressed)
 - Text of posts, plus category metadata
 - e.g., match buyers and sellers

How big is the Web?

- How big is the Web?
 - Technically, infinite
 - Much duplication (30-40%)
 - Best estimate of "unique" static HTML pages comes from search engine claims
 - Google = 8 billion(?), Yahoo = 20 billion
- What is the structure of the Web? How is it organized?

Web as a Graph

I teach a class on Networks.

Networks Course: We have a class blog

> Networks Class Blog: This blog post is about Microsoft

Microsoft Home Page

Web as a Graph

- In early days of the Web links were navigational
- Today many links are transactional

Directed graphs

- Two types of directed graphs:
 - DAG directed acyclic graph:
 - Has no cycles: if u can reach v, then v can not reach u
 - Strongly connected:
 - Any node can reach any node via a directed path
- Any directed graph can be expressed in terms of these two types

Strongly connected component

- Strongly connected component (SCC) is a set of nodes S so that:
 - Every pair of nodes in S can reach each other
 - There is no larger set containing S with this property

Graph structure of the Web

- Take a large snapshot of the web and try to understand how it's SCCs "fit" as a DAG.
- Computational issues:
 - Say want to find SCC containing specific node v?
 - Observation:
 - Out(v) ... nodes that can be reachable from v (BFS out)
 - SCC containing v:
 - $= Out(v, G) \cap In(v, G)$
 - $= Out(v, G) \cap Out(v, G)$

where G is G with directions of all edge flipped

Graph structure of the Web

- There is a giant SCC
- Broder et al., 2000:
 - Giant weakly connected component: 90% of the nodes

Bow-tie structure of the Web

250 million webpages, 1.5 billion links [Altavista]

Diameter of the Web

Diameter (average directed shortest path length) is 19 (in 1999)

Diameter of the Web

- Average distance:
 75% of time there is no directed path from start to finish page
 - Follow in-links (directed): 16.12
 - Follow out-links (directed): 16.18
 - Undirected: 6.83
- Diameter of SCC (directed):
 - At least 28

Degree distribution on the Web

Degrees in real networks

Take real network plot a histogram of p_k vs. k

Degrees in real networks (2)

Plot the same data on log-log axis:

Exponential tail vs. Power-law tail

Power law degree exponents

- Power law degree exponent is typically $2 < \alpha < 3$
 - Web graph [Broder et al. 00]:

•
$$\alpha_{in}$$
 = 2.1, α_{out} = 2.4

- Autonomous systems [Faloutsos et al. 99]:
 - $\alpha = 2.4$
- Actor collaborations [Barabasi-Albert 00]:
 - $\alpha = 2.3$
- Citations to papers [Redner 98]:
 - $\alpha \approx 3$
- Online social networks [Leskovec et al. 07]:
 - $\alpha \approx 2$

Power-law network

Random network

(Erdos-Renyi_random graph)

Degree distribution is Binomial

Scale-free (power-law) network

Degree distribution is Power-law

Function is scale free if:
$$f(ax) = c f(x)$$

Ranking nodes on the graph

- Web pages are not equally "important"
 - www.joe-schmoe.com v www.stanford.edu

Since there is big diversity in the

connectivity of the webgraph we can

rank pages by the link structure

Links as votes

- First try:
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.stanford.edu has 23,400 inlinks
 - www.joe-schmoe.com has 1 inlink
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

Simple recursive formulation

- Each link's vote is proportional to the importance of its source page
- If page P with importance x has n out-links, each link gets x/n votes
- Page P's own importance is the sum of the votes on its in-links

Simple "flow" model

The web in 1839

$$y = y/2 + a/2$$

 $a = y/2 + m$
 $m = a/2$

Solving the flow equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo scale factor
- Additional constraint forces uniqueness
 - y+a+m = 1
 - y = 2/5, a = 2/5, m = 1/5
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

Matrix formulation

- Matrix M has one row and one column for each web page
- Suppose page j has n out-links
 - If $j \rightarrow i$, then $M_{ij} = 1/n$
 - else M_{ii} = 0
- M is a column stochastic matrix
 - Columns sum to 1
- Suppose r is a vector with one entry per web page
 - r_i is the importance score of page i
 - Call it the rank vector
 - |r| = 1

Example

Suppose page j links to 3 pages, including i

Eigenvector formulation

The flow equations can be written

$$r = Mr$$

- So the rank vector is an eigenvector of the stochastic web matrix
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1

Example

	Y!	Α	MS
Y!	1/2	1/2	0
Α	1/2	0	1
MS	0	1/2	0

$$r = Mr$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power Iteration method

- Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- Initialize: $\mathbf{r}^0 = [1/N,....,1/N]^T$
- Iterate: $\mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$
- Stop when $|\mathbf{r}^{k+1} \mathbf{r}^k|_1 < \varepsilon$
 - $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm
 - Can use any other vector norm e.g., Euclidean

Power Iteration Example

Power iteration:

- Set r_i=1/n
- $r_i = \sum_j M_{ij} r_j$
- And iterate

	Y!	Α	MS
Y!	1/2	1/2	0
Α	1/2	0	1
ΛS	0	1/2	0

Example:

y
$$1/3$$
 $1/3$ $5/12$ $3/8$ $2/5$ $a = 1/3$ $1/2$ $1/3$ $11/24$... $2/5$ m $1/3$ $1/6$ $1/4$ $1/6$ $1/5$

Random Walk Interpretation

- Imagine a random web surfer
 - At any time t, surfer is on some page P
 - At time t+1, the surfer follows an outlink from P uniformly at random
 - Ends up on some page Q linked from P
 - Process repeats indefinitely
- Let p(t) be a vector whose ith component is the probability that the surfer is at page i at time t
 - p(t) is a probability distribution on pages

The stationary distribution

- Where is the surfer at time t+1?
 - Follows a link uniformly at random
 - p(t+1) = Mp(t)
- Suppose the random walk reaches a state such that p(t+1) = Mp(t) = p(t)
 - Then p(t) is called a stationary distribution for the random walk
- Our rank vector r satisfies r = Mr
 - So it is a stationary distribution for the random surfer

Existence and Uniqueness

A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0.

Problems with the "flow" model

- Some pages are "dead ends" (have no out-links)
 - Such pages cause importance to leak out

- Spider traps (all out links are within the group)
 - Eventually spider traps absorb all importance

Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem

Spider traps

Power iteration:

- Set r_i=1
- $r_i = \sum_j M_{ij} r_j$
- And iterate

	Y!	Α	MS
Y!	1/2	1/2	0
Α	1/2	0	0
MS	0	1/2	1

Example:

У		1	1	3/4	5/8		0
a	=	1	1/2	1/2	3/8	•••	0
m		1	3/2	7/4	2		3

Solution: Random teleports

- The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1- β , jump to some page uniformly at random
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Random teleports ($\beta = 0.8$)

+0.2*

1/2

1/3

1/3

Random teleports ($\beta = 0.8$)

 1/2 1/2 0

 1/2 0 0

 0 1/2 1

+ 0.2 | 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3

y 7/15 7/15 1/15 a 7/15 1/15 1/15 m 1/15 7/15 13/15

Dead ends

Power iteration:

- Set r_i=1
- $r_i = \sum_j M_{ij} r_j$
- And iterate

	Y!	Α	MS
Y!	1/2	1/2	0
Α	1/2	0	0
MS	0	1/2	0

Example:

Dealing with dead-ends

- Teleport
 - Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly
- Prune and propagate
 - Preprocess the graph to eliminate dead-ends
 - Might require multiple passes
 - Compute page rank on reduced graph
 - Approximate values for deadends by propagating values from reduced graph

Matrix formulation

- Suppose there are N pages
 - Consider a page j, with set of outlinks O(j)
 - We have M_{ij} = 1/|O(j)| when j→i and M_{ij} = 0 otherwise
 - The random teleport is equivalent to
 - adding a teleport link from j to every other page with probability $(1-\beta)/N$
 - reducing the probability of following each outlink from 1/|O(j)| to $\beta/|O(j)|$
 - Equivalent: tax each page a fraction (1- β) of its score and redistribute evenly

Page Rank

- Construct the N x N matrix A as follows
 - $A_{ij} = \beta M_{ij} + (1-\beta)/N$
- Verify that A is a stochastic matrix
- The page rank vector r is the principal eigenvector of this matrix
 - satisfying r = Ar
- Equivalently, r is the stationary distribution of the random walk with teleports

Computing page rank

- Key step is matrix-vector multiplication
 - rnew = Arold
- Easy if we have enough main memory to hold A, r^{old}, r^{new}
- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - 10¹⁸ is a large number!

Rearranging the equation

```
\begin{split} & \mathbf{r} = \mathbf{Ar}, \text{ where} \\ & A_{ij} = \beta M_{ij} + (1-\beta)/N \\ & r_i = \sum_{1 \leq j \leq N} A_{ij} \, r_j \\ & r_i = \sum_{1 \leq j \leq N} \left[\beta M_{ij} + (1-\beta)/N\right] \, r_j \\ & = \beta \sum_{1 \leq j \leq N} M_{ij} \, r_j + (1-\beta)/N \sum_{1 \leq j \leq N} r_j \\ & = \beta \sum_{1 \leq j \leq N} M_{ij} \, r_j + (1-\beta)/N, \text{ since } |\mathbf{r}| = 1 \\ & \mathbf{r} = \beta \mathbf{Mr} + \left[ (1-\beta)/N \right]_N \\ & \text{where } [\mathbf{x}]_N \text{ is an N-vector with all entries } \mathbf{x} \end{split}
```

Sparse matrix formulation

- We can rearrange the page rank equation:
 - $r = \beta Mr + [(1-\beta)/N]_N$
 - $[(1-\beta)/N]_N$ is an N-vector with all entries $(1-\beta)/N$
- M is a sparse matrix!
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $\mathbf{r}^{\text{new}} = \beta \mathbf{M} \mathbf{r}^{\text{old}}$
 - Add a constant value (1-β)/N to each entry in r^{new}

Sparse matrix encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - say 10N, or 4*10*1 billion = 40GB
 - still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic Algorithm

- Assume we have enough RAM to fit r^{new}, plus some working memory
 - Store r^{old} and matrix M on disk

Basic Algorithm:

- Initialize: $\mathbf{r}^{\text{old}} = [1/N]_{N}$
- Iterate:
 - Update: Perform a sequential scan of M and rold to update rnew
 - Write out r^{new} to disk as r^{old} for next iteration
 - Every few iterations, compute | r^{new}-r^{old} | and stop if it is below threshold
 - Need to read in both vectors into memory

Update step

```
Initialize all entries of \mathbf{r}^{\text{new}} to (1-\beta)/N

For each page p (out-degree n):

Read into memory: p, n, \text{dest}_1, \dots, \text{dest}_n, r^{\text{old}}(p)

for j = 1..n:

r^{\text{new}}(\text{dest}_j) += \beta^* r^{\text{old}}(p)/n
```


src	degree	destination
0	3	1, 5, 6
1	4	17, 64, 113, 117
2	2	13, 23

Analysis

- In each iteration, we have to:
 - Read rold and M
 - Write r^{new} back to disk
 - IO Cost = 2|r| + |M|
- What if we had enough memory to fit both r^{new} and r^{old}?
- What if we could not even fit r^{new} in memory?
 - 10 billion pages

Block-based update algorithm

2	
3	

src	degree	destination
0	4	0, 1, 3, 5
1	2	0, 5
2	2	3, 4

Analysis of Block Update

- Similar to nested-loop join in databases
 - Break r^{new} into k blocks that fit in memory
 - Scan M and rold once for each block
- k scans of M and rold
 - k(|M| + |r|) + |r| = k|M| + (k+1)|r|
- Can we do better?
- Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration

Block-Stripe Update algorithm

src	<u>degree</u>	destination
0	4	0, 1
1	3	0
2	2	1

0	4	3
2	2	3

4	
5	

0	4	5
1	3	5
2	2	4

Block-Stripe Analysis

- Break M into stripes
 - Each stripe contains only destination nodes in the corresponding block of r^{new}
- Some additional overhead per stripe
 - But usually worth it
- Cost per iteration
 - $|M|(1+\varepsilon) + (k+1)|r|$