Skip to main content

Advertisement

Log in

Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985–2014

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

In this study, two statistical approaches were adopted in the analysis of observed maximum temperature data collected from fifteen stations over Saudi Arabia during the period 1985–2014. In the first step, the behavior of extreme temperatures was analyzed and their changes were quantified with respect to the Expert Team on Climate Change Detection Monitoring indices. The results showed a general warming trend over most stations, in maximum temperature-related indices, during the period of analysis. In the second step, stationary and non-stationary extreme-value analyses were conducted for the temperature data. The results revealed that the non-stationary model with increasing linear trend in its location parameter outperforms the other models for two-thirds of the stations. Additionally, the 10-, 50-, and 100-year return levels were found to change with time considerably and that the maximum temperature could start to reappear in the different T-year return period for most stations. This analysis shows the importance of taking account the change over time in the estimation of return levels and therefore justifies the use of the non-stationary generalized extreme value distribution model to describe most of the data. Furthermore, these last findings are in line with the result of significant warming trends found in climate indices analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. A tied group is a set of sample data having the same value.

  2. The likelihood test was used for testing the null-hypothesis H: ξ = 0 against the two-sided alternative (ξ ≠ 0). The estimated shape parameters were found to be very close to 0 for 10 stations as the null hypothesis was not rejected at the significance level of 0.05.

  3. The current maximum are given in Table 1.

References

  • Aguilar E, Peterson TC, Ramírez Obando P et al (2005) Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J Geophys Res 110:D23107. doi:10.1029/2005JD006119

    Article  Google Scholar 

  • Aguilar E, Barry AA, Brunet M et al (2009) Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J Geophys Res-Atmos 114(D2):D02115. doi:10.1029/2008JD011010

    Article  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi:10.1029/2005JD006290

    Google Scholar 

  • Alghamdi AS, Moore TW (2014) Analysis and comparison of trends in extreme temperature indices in Riyadh city, Kingdom of Saudi Arabia, 1985–2010. J Climatol 2014:1–10. doi:10.1155/2014/560985

    Article  Google Scholar 

  • Almazroui M, Islam MN, Jones PD, Athar H, Rahman MA (2012) Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int J Climatol 32:953–966. doi:10.1002/joc.3446

    Article  Google Scholar 

  • Almazroui M, Hasanean HM, Al-Khalaf AK et al (2013) Detecting climate change signals in Saudi Arabia using mean annual surface air temperatures. Theor Appl Climatol 113:585–598. doi:10.1007/s00704-012-0812-x

    Article  Google Scholar 

  • Athar H (2014) Trends in observed extreme climate indices in Saudi Arabia during 1979–2008. Int J Climatol 34(5):1561–1574. doi:10.1002/joc.3783

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Caesar J, Alexander LV, Trewin B et al (2011) Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005. Int J Climatol 31(6):791

    Article  Google Scholar 

  • Cannon AJ (2010) A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology. Hydrol Process 24:673–685. doi:10.1002/hyp.7506

    Article  Google Scholar 

  • Chang H, Praskievicz S, Parandvash H (2014) Sensitivity of urban water consumption to weather and climate variability at multiple temporal scales: the case of Portland, Oregon. International Journal of Geospatial and Environmental Research 1(1):Article 7

    Google Scholar 

  • Chavez-Demoulin V, Davison AC (2005) Generalized additive modelling of sample extremes. Journal of the Royal Statistical Society. Series C (Applied Statistics) 54(1):207–222. doi:10.1111/j.1467-9876.2005.00479.x

    Article  Google Scholar 

  • Chavez-Demoulin V, Davison AC (2012) Modelling time series extremes. REVSTAT-Statistical Journal 10:109–133

    Google Scholar 

  • Chen YR, Chu P (2014) Trends in precipitation extremes and return levels in the Hawaiian Islands under a changing climate. Int J Climatol 34(15):3913–3925. doi:10.1002/joc.3950

    Article  Google Scholar 

  • Chen F, Chen H, Yang Y (2015) Annual and seasonal changes in means and extreme events of precipitation and their connection to elevation over Yunnan Province, China. Quat Int 374:46–61. doi:10.1016/j.quaint.2015.02.016

    Article  Google Scholar 

  • Cheng L, Agha Kouchak A, Gilleland E, Katz RW (2014) Non-stationary extreme value analysis in a changing climate. Clim Chang 127(2):353–369. doi:10.1007/s10584-014-1254-5

    Article  Google Scholar 

  • Coles SG (2001) An introduction to statistical modelling of extreme values. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Coles SG, Powell EA (1996) Bayesian methods in extreme value modelling: a review and new developments. Int Stat Rev 64:119–136

    Article  Google Scholar 

  • Cooley D (2009) Extreme value analysis and the study of climate change: a commentary on Wigley 1988. Clim Chang 97(1–2):77–83. doi:10.1007/s10584-009-9627-x

    Article  Google Scholar 

  • Davison AC, Smith RL (1990) Models for exceedances over high thresholds. Journal of the Royal Statistical Society B 52:393–442

    Google Scholar 

  • Easterling DR, Horton B, Jones PD et al (1997) Maximum and minimum temperature trends for the globe. Science 277(5324):364–367. doi:10.1126/science.277.5324.364

    Article  Google Scholar 

  • El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43:W03410. doi:10.1029/2005WR004545

    Article  Google Scholar 

  • Embrechts P, Kluppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, Berlin

    Book  Google Scholar 

  • Emmanuel A (2014) Rising temperature and declining rainfall—a threat to water security in northern region of Ghana. British J Appl Sci Technol 4(34):4721–4730. doi:10.9734/BJAST/2014/13031

    Article  Google Scholar 

  • Feng S, Nadarajah S, Hu Q (2007) Modeling annual extreme precipitation in China using the generalized extreme value distribution. J Meteorol Soc Jpn 85(5):599–613. doi:10.2151/jmsj.85.599

    Article  Google Scholar 

  • Fisher R, Tippett L (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc Camb Philos Soc 24:180–190. doi:10.1017/S0305004100015681

    Article  Google Scholar 

  • Frei C (2003) Statistical limitation for diagnosing changes in extremes from climate model simulations. In: Proc. 14th Sympos. on global change and climate variations. AMS Annual Meeting 2003, Long Beach, CA. On CD-ROM, p 6

    Google Scholar 

  • Gao M, Mo D, Wu X (2016) Nonstationary modeling of extreme precipitation in China. Atmos Res 182:1–9. doi:10.1016/j.atmosres.2016.07.014

    Article  Google Scholar 

  • Garcıa JA, Gallego MC, Serrano A, Vaquero JM (2007) Trends in block-seasonal extreme rainfall over the Iberian Peninsula in the second half of the twentieth century. J Clim 20:113–130. doi:10.1175/JCLI3995.1

    Article  Google Scholar 

  • Garza JA, Chu P, Norton CW, Schroeder TA (2012) Changes of the prevailing trade winds over the Islands of Hawaii and the North Pacific. J Geophys Res 117:1–18. doi:10.1029/2011JD016888

    Article  Google Scholar 

  • Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, New York

    Google Scholar 

  • Gilleland E, Katz RW (2011) New software to analyze how extremes change over time. Eos 92(2):13–14. doi:10.1029/2011EO020001

    Article  Google Scholar 

  • Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using Mann–Kendall and Sen’s slope estimator statistical tests in Serbia. Glob Planet Chang 100:172–182. doi:10.1016/j.gloplacha.2012.10.014

    Article  Google Scholar 

  • Grasa AA (1989) Econometric model selection: a new approach. Springer, Netherlands

    Book  Google Scholar 

  • Griffiths GM, Chambers LE, Haylock MR et al (2005) Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region. Int J Climatol 25(10):1301–1330. doi:10.1002/joc.1194

    Article  Google Scholar 

  • Guan Y, Zhang X, Zheng F, Wang B (2015) Trends and variability of daily temperature extremes during 1960–2012 in the Yangtze River Basin, China. Glob Planet Chang 124:79–94. doi:10.1016/j.gloplacha.2014.11.008

    Article  Google Scholar 

  • Hall P, Tajvidi N (2000) Non-parametric analysis of temporal trend when fitting parametric models to extreme-value data. Stat Sci 15:153–167

    Article  Google Scholar 

  • Haylock MR, Peterson TC, Alves LM, Ambrizzi T (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19(8):1490–1512. doi:10.1175/JCLI3695.1

    Article  Google Scholar 

  • Homewood P (2016) Extreme rainfall trends in Australia. In: Not a lot of people know that. https://notalotofpeopleknowthat.wordpress.com/2016/10/14/extreme-rainfall-trends-in-australia/. Accessed 14 Oct 2016.

  • Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J Royal Statistical Soc Ser B 52:105–124

    Google Scholar 

  • Hosking JRM, Wallis JR, Wood EF (1985) Estimation of the generalized extreme-value distribution by the method probability-weighted moments. Technometrics 27:251–261

    Article  Google Scholar 

  • Hounkpè J, Diekkrüger B, Badou DF, Afouda A (2015) Non-stationary flood frequency analysis in the Ouémé River Basin, Benin Republic. Hydrology 2(4):210–229. doi:10.3390/hydrology2040210

    Article  Google Scholar 

  • Insaf TZ, Lin S, Sheridan SC (2013) Climate trends in indices for temperature and precipitation across New York State, 1948–2008. Air quality. Atmosphere & Health 6(1):247–257. doi:10.1007/s11869-011-0168-x

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. United Kingdom and New York, NY, USA, Cambridge

    Google Scholar 

  • Joyce CB, Simpson M, Casanova M (2016) Future wet grasslands: ecological implications of climate change. Ecosystem Health and Sustainability 2(9):e01240-n/a. doi:10.1002/ehs2.1240

    Article  Google Scholar 

  • Karl TR, Easterling DR (1999) Climate extremes: selected review and future research directions. Clim Chang 42(1):309–325. doi:10.1023/A:1005436904097

    Article  Google Scholar 

  • Katz RW (2013) Statistical methods for nonstationary extremes. In: Agha Kouchak A, Easterling D, Hsu K, Schubert S, Sorooshian S (eds) . Springer, Extremes in a changing climate, pp 15–38

    Google Scholar 

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25(8):1287–1304. doi:10.1016/S0309-1708(02)00056-8

    Article  Google Scholar 

  • Katz RW, Brush GS, Parlange MB (2005) Statistics of extremes: modeling ecological disturbances. Ecology 86:1124–1134. doi:10.1890/04-0606

    Article  Google Scholar 

  • Kaushal N, Bhandari K, Siddique KHM, Nayyar H (2016) Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric 2(1):1–42. doi:10.1080/23311932.2015.1134380

    Google Scholar 

  • Keggenhoff I, Elizbarashvili M, King L (2015) Recent changes in Georgia′s temperature means and extremes: annual and seasonal trends between 1961 and 2010. Weather and Climate Extremes 8:34–45. doi:10.1016/j.wace.2014.11.002

    Article  Google Scholar 

  • Kioutsioukis I, Melas D, Zerefos C (2010) Statistical assessment of changes in climate extremes over Greece (1955–2002). Int J Climatol 30(11):1723–1737. doi:10.1002/joc.2030

    Article  Google Scholar 

  • Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680. doi:10.1016/j.wace.2014.11.002

    Article  Google Scholar 

  • Krishna L (2014) Long term temperature trends in four different climatic zones of Saudi Arabia. Int J Appl Sci Technol 4(5):233–242

    Google Scholar 

  • Kunkel KE, Pielke RA Jr, Changnon SA (1999) Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bull Am Meteorol Soc 80(6):1077–1098. doi:10.1175/1520-0477(1999)080<1077: TFIWAC>2.0.CO;2

    Article  Google Scholar 

  • Lee C, Chiu Y (2011) Electricity demand elasticities and temperature: evidence from panel smooth transition regression with instrumental variable approach. Energy Econ 33(5):896–902. doi:10.1016/j.eneco.2011.05.009

    Article  Google Scholar 

  • Library of Congress (2006) Country profile: Saudi Arabia https://www.loc.gov/rr/frd/cs/profiles/Saudi_Arabia.pdf

  • Manton MJ, Della-Marta PM, Haylock MR et al (2001) Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int J Climatol 21(3):269–284. doi:10.1002/joc.610

    Article  Google Scholar 

  • Marimoutou V, Raggad B, Trabelsi A (2009) Extreme value theory and value at risk: application to oil market. Energy Econ 31(4):519–530. doi:10.1016/j.eneco.2009.02.005

    Article  Google Scholar 

  • McNeil AJ, Frey R (2000) Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. J Empir Financ 7(3):271–300. doi:10.1016/S0927-5398(00)00012-8

    Article  Google Scholar 

  • Moberg A, Jones PD (2005) Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901–99. Int J Climatol 25(9):1149–1171. doi:10.1002/joc.1163

    Article  Google Scholar 

  • New M, Hewitson B, Stephenson DA et al (2006) Evidence of trends in daily climate extremes over southern and west Africa. J Geophys Res 111:D14102. doi:10.1029/2005JD006289

    Article  Google Scholar 

  • Pal JS, Eltahir EAB (2016) Future temperature in Southwest Asia projected to exceed a threshold for human adaptability. Nat Clim Chang 6:197–200

    Article  Google Scholar 

  • Patz JA, Holloway T, Campbell-Lendrum D, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317. doi:10.1038/nature04188

    Article  Google Scholar 

  • Peterson TC, Folland C, Gruza G, Hogg W, Mokssit A, Plummer N (2001) Report of the activities of the working group on climate change detection and related rapporteurs. In: World Meteorological Organization technical document 1071. Commission for Climatology, World Meteorological Organization, Geneva

    Google Scholar 

  • Peterson TC, Taylor MA, Demeritte R, Duncombe DL, Burton S, Thompson F, Porter A, Mercedes M, Villegas E, Fils RS, Klein-Tank AMG, Martis A, Warner R, Joyette A, Mills W, Alexander L, Gleason B (2002) Recent changes in climate extremes in the Caribbean region. J Geophys Res 107:4601. doi:10.1029/2002JD002251

    Article  Google Scholar 

  • Rahman S, Al Hadhrami LM (2012) Extreme temperature trends on the west coast of Saudi Arabia. Atmos Climate Sci 2:351–361. doi:10.4236/acs.2012.23031

    Google Scholar 

  • Rulfová Z, Kyselý J (2014) Trends of convective and stratiform precipitation in the Czech Republic, 1982–2010. Adv Meteorol 2014:1–11. doi:10.1155/2014/647938

    Article  Google Scholar 

  • Salas JD, Obeysekera J (2014) Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. J Hydrol Eng 19(3):554–568. doi:10.1061/(ASCE)HE.1943-5584.0000820

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Skansi MDLM, Brunet M, Sigró J et al (2013) Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Chang 100:295–307. doi:10.1016/j.gloplacha.2012.11.004

    Article  Google Scholar 

  • Vanem E (2015) Uncertainties in extreme value modelling of wave data in a climate change perspective. Journal of Ocean Engineering and Marine Energy 1:339–359. doi:10.1007/s40722-015-0025

    Article  Google Scholar 

  • Vincent LA, Peterson TC, Barros VR, Marino MB (2005) Observed trends in indices of daily temperature extremes in South America 1960–2000. J Clim 18(23):5011–5023. doi:10.1175/JCLI3589.1

    Article  Google Scholar 

  • Westra S, Sisson SA (2011) Detection of non-stationarity in precipitation extremes using a max-stable process model. J Hydrol 406(1):119–128. doi:10.1016/j.jhydrol.2011.06.014

    Article  Google Scholar 

  • Zhang X, Alexander LV, Hegerl GC, Klein-Tank A, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Clim. Change 2: 851–870. doi:10.1002/wcc.147

Download references

Acknowledgements

The author would like to thank Belgacem Raggad for the review of the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bechir Raggad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raggad, B. Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985–2014. Theor Appl Climatol 132, 1217–1235 (2018). https://doi.org/10.1007/s00704-017-2155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2155-0

Keywords

Navigation