Skip to main content

Advertisement

Log in

Warmest extreme year in U.S. history alters thermal requirements for tree phenology

Oecologia Aims and scope Submit manuscript

Abstract

The frequency of extreme warm years is increasing across the majority of the planet. Shifts in plant phenology in response to extreme years can influence plant survival, productivity, and synchrony with pollinators/herbivores. Despite extensive work on plant phenological responses to climate change, little is known about responses to extreme warm years, particularly at the intraspecific level. Here we investigate 43 populations of white ash trees (Fraxinus americana) from throughout the species range that were all grown in a common garden. We compared the timing of leaf emergence during the warmest year in U.S. history (2012) with relatively non-extreme years. We show that (a) leaf emergence among white ash populations was accelerated by 21 days on average during the extreme warm year of 2012 relative to non-extreme years; (b) rank order for the timing of leaf emergence was maintained among populations across extreme and non-extreme years, with southern populations emerging earlier than northern populations; (c) greater amounts of warming units accumulated prior to leaf emergence during the extreme warm year relative to non-extreme years, and this constrained the potential for even earlier leaf emergence by an average of 9 days among populations; and (d) the extreme warm year reduced the reliability of a relevant phenological model for white ash by producing a consistent bias toward earlier predicted leaf emergence relative to observations. These results demonstrate a critical need to better understand how extreme warm years will impact tree phenology, particularly at the intraspecific level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(adapted from Fig. 1 of (Luedeling et al. 2009))

Fig. 2

Adapted from (Marchin et al. 2008) and USDA Forest Service (www.na.fs.fed.us)

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson JL, Richardson EA (1986) Validation of winter chill unit and flower bud phenology models for ‘monmorency’ sour cherry. Acta Hortic 184:71–77

    Article  Google Scholar 

  • Augspurger CK (2013) Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing. Ecology 94:41–50

    Article  PubMed  Google Scholar 

  • Basler D, Körner C (2012) Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric For Meteorol 165:73–81

    Article  Google Scholar 

  • Borchert R, Robertson K, Schwartz MD, Williams-Linera G (2005) Phenology of temperate trees in tropical climates. Int J Biometerol 50:57–65

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York, NY, USA

  • Cesaraccio C, Spano D, Snyder RL, Duce P (2004) Chilling and forcing model to predict bud-burst of crop and forest species. Agric For Meteorol 126:1–13. doi:10.1016/j.agrformet.2004.03.002

    Article  Google Scholar 

  • Chang CT, Wang HC, Huang CY (2013) Impacts of vegetation onset time on the net primary productivity in a mountainous island in Pacific Asia. Environ Res Lett 8:11. doi:10.1088/1748-9326/8/4/045030

    Article  Google Scholar 

  • Chang H, Castro CL, Carillo CM (2015) The more extreme nature of U.S. warm season climate in the observational record and two “well-performing” dynamically downscaled CMIP3 models. J Geophys Res 120:8244–8263

    Google Scholar 

  • Chuine I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21:455–466. doi:10.1046/j.1365-3040.1998.00299.x

    Article  Google Scholar 

  • Chuine I, Kramer K, Hanninen H (2003) Plant development models. In: Schwartz M (ed) Phenology: an integrative environmental science. Springer, Rotterdam, pp 217–235

    Chapter  Google Scholar 

  • Clark JS, Salk C, Melillo J, Mohan J, Anten N (2014) Tree phenology responses to winter chilling, spring warming, at north and south range limits. Funct Ecol 28:1344–1355. doi:10.1111/1365-2435.12309

    Article  Google Scholar 

  • Cleland EE, Allen JM, Crimmins TM, Dunne JA, Pau S, Travers SE, Zavaleta ES, Wolkovich EM (2012) Phenological tracking enables positive species responses to climate change. Ecology 93:1765–1771

    Article  PubMed  Google Scholar 

  • Cook BI, Wolkovich EM, Parmesan C (2012) Divergent response to spring and winter warming drive community level flowering trends. Proc Natl Acad Sci USA 109:9000–9005. doi:10.1073/pnas.1118364109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke JE, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ 10:1707–1728

    Article  Google Scholar 

  • Dantec CF, Vitasse Y, Bonhomme M, Louvet JM, Kremer A, Delzon S (2014) Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range. Int J Biometereol 58:1853–1864. doi:10.1007/s00484-014-0787-7

    Article  Google Scholar 

  • Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Willett KM, Aguilar E, Brunet M, Caesar J, Hewitson B, Jack C, Klein Tank AMG, Kruger AC, Marengo J, Peterson TC, Renom M, Oria Rojas C, Rusticucci M, Salinger J, Elrayah AS, Sekele SS, Srivastava AK, Trewin B, Villarroel C, Vincent LA, Zhai P, Zhang X, Kitching S (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res Atmos 118:2098–2118. doi:10.1002/jgrd.50150

    Article  Google Scholar 

  • Ellwood ER, Temple SA, Primack RB, Bradley NL, Davis CC (2013) Record-breaking early flowering in the Eastern United States. PLoS One 8:9. doi:10.1371/journal.pone.0053788

    Article  Google Scholar 

  • Fahey RT (2016) Variation in responsiveness of woody plant leaf out phenology to anomalous spring onset. Ecosphere. doi:10.1002/ecs2.1209

    Google Scholar 

  • Forrest JRK (2015) Plant-pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? Oikos 124:4–13. doi:10.1111/oik.01386

    Article  Google Scholar 

  • Friedl MA, Gray JM, Melaas EK, Richardson AD, Hufkens K, Keenan TF, Bailey A, O’Keefe J (2014) A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environ Res Lett 9:9. doi:10.1088/1748-9326/9/5/054006

    Article  Google Scholar 

  • Fu YH, Campioli M, Deckmyn G, Janssens IA (2013) Sensitivity of leaf unfolding to experimental warming in three temperate tree species. Agric For Meteorol 181:125–132. doi:10.1016/j.agrformet.2013.07.016

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci USA 109:E2415–E2423. doi:10.1073/pnas.1205276109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. J Appl Ecol 29:597–604

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disaster to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom New York, NY, USA

  • Jeong S-J, Ho C-H, Gim H-J, Brown ME (2011) Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob Chang Biol 17:2385–2399. doi:10.1111/j.1365-2486.2011.02397.x

    Article  Google Scholar 

  • Jeong S-J, Medvigy D, Shevliakova E, Malyshev S (2012) Uncertainties in terrestrial carbon budgets related to spring phenology. J Geophys Res. doi:10.1029/2011JG001868

    Google Scholar 

  • Laube J, Sparks TH, Estrella N, Hofler J, Ankerst DP, Menzel A (2014) Chilling outweighs photoperiod in preventing precocious spring development. Glob Chang Biol 20:170–182. doi:10.1111/gcb.12360

    Article  PubMed  Google Scholar 

  • Liang L (2015) Geographic variations in spring and autumn phenology of white ash in a common garden. Phys Geogr. doi:10.1080/02723646.2015.1123538

    Google Scholar 

  • Luedeling E, Brown PH (2011) A global analysis of the comparability of winter chill models for fruit and nut trees. Int J Biometeorol 55:411–421. doi:10.1007/s00484-010-0352-y

    Article  PubMed  Google Scholar 

  • Luedeling E, Zhang MH, McGranahan G, Leslie C (2009) Validation of winter chill models using historic records of walnut phenology. Agric For Meteorol 149:1854–1864. doi:10.1016/j.agrformet.2009.06.013

    Article  Google Scholar 

  • Luterbacher J, Liniger MA, Menzel A, Estrella N, Della-Marta PM, Pfister C, Rutishauser T, Xoplaki E (2007) Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phenological impacts. Geophys Res Lett 34:6. doi:10.1029/2007gl029951

    Article  Google Scholar 

  • Marchin RM, Sage EL, Ward JK (2008) Population-level variation of Fraxinus americana (white ash) is influenced by precipitation differences across the native range. Tree Physiol 28:151–159

    Article  PubMed  Google Scholar 

  • Marchin RM, Salk CF, Hoffmann WA, Dunn RD (2015) Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Glob Chang Biol 21:3138–3151

    Article  PubMed  Google Scholar 

  • Migliavacca M, Sonnentag O, Keenan TF, Cescatti A, O’Keefe J, Richardson AD (2012) On the uncertainty of phenological response to climate change, and implications for a terrestrial biosphere model. Biogeosciences 9:2063–2083

    Article  Google Scholar 

  • Morin X, Lechowicz MJ, Augspurger C, O’Keefe J, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Glob Chang Biol 15:961–975. doi:10.1111/j.1365-2486.2008.01735.x

    Article  Google Scholar 

  • Mutiibwa D, Vavrus S, McAfee S, Albright T (2015) Recent spatiotemporal patterns in temperature extremes across conterminous United States. J Geophys Res Atmos 120:7378–7392

    Article  Google Scholar 

  • National Weather Service (2014) Monthly and seasonal mean temperature for Topeka, KS

  • NOAA (2012) State of the climate: national overview for annual 2012

  • Pletsers A, Caffarra A, Kelleher C, Donnelly A (2015) Chilling temperature and photoperiod influence the timing of bud burst in juvenile Betula pubescens Ehrh. and Populus tremula L. trees. Ann For Sci 72:941–953

    Article  Google Scholar 

  • Poland TM, McCullough DG (2006) Emerald ash borer: invasion of the urban forest and the threat to North America’s ash resource. J For 104:118–124

    Google Scholar 

  • Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191:926–941. doi:10.1111/j.1469-8137.2011.03803.x

    Article  PubMed  Google Scholar 

  • Polgar CA, Gallinat A, Primack RB (2013) Drivers of leaf-out phenology and their implications for species invasions: insights from Thoreau’s Concord. New Phytol 202:106–115

    Article  PubMed  Google Scholar 

  • Press WH, Teulosky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Primack RB, Laube J, Gallinat A, Menzel A (2015) From observations to experiments in phenology: investigating climate change impacts on trees and shrubs using dormant twigs. Ann Bot 116:889–897

    Article  PubMed  PubMed Central  Google Scholar 

  • Rea R, Eccel E (2006) Phenological models for blooming of apple in a mountainous region. Int J Biometeorol 51:1–16. doi:10.1007/s00484-006-0043-x

    Article  PubMed  Google Scholar 

  • Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. HortSci 9:331–332

    Google Scholar 

  • Rousi M, Pusenius J (2005) Variations in phenology and growth of European white birch (Betula pendula) clones. Tree Physiol 25:201–210

    Article  PubMed  Google Scholar 

  • Rutishauser T, Luterbacher J, Defila C, Frank D, Wanner H (2008) Swiss spring plant phenology 2007: Extremes, a multi-century perspective, and changes in temperature sensitivity. Geophys Res Lett 35:5. doi:10.1029/2007gl032545

    Article  Google Scholar 

  • Salk CF (2011) Will the timing of temperate deciduous trees’ budburst and leaf senescence keep up with a warming climate? PhD dissertation, Department of Biology, Duke University, Durham, North Carolina, USA

  • Sanz-Pérez V, Castro-Díez P, Valladares F (2009) Differential and interactive effects of temperature and photoperiod on budburst and carbon reserves in two co-occurring Mediterranean oaks. Plant Biol 11:142–151. doi:10.1111/j.1438-8677.2008.00119.x

    Article  PubMed  Google Scholar 

  • Suzuki M, Yoda K, Suzuki H (1996) Phenological comparison of the onset of vessel formation between ring-porous and diffuse-porous deciduous trees in a Japanese temperate forest. IAWA J 17:431–444

    Article  Google Scholar 

  • United States Weather Bureau (1942) Kansas weather and climate. Kansas State Printing Plant, W.C. Austin, State Printer, Topeka

    Google Scholar 

  • Vihera-Aarnio A, Sutinen S, Partanen J, Hakkinen R (2014) Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures. Tree Physiol 34:547–556. doi:10.1093/treephys/tpu038

    Article  PubMed  Google Scholar 

  • Vitasse Y, François C, Delpierre N, Dufrêne E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol 151:969–980. doi:10.1016/j.agrformet.2011.03.003

    Article  Google Scholar 

  • Vitasse Y, Lenz A, Kollas C, Randin CF, Hoch G, Körner C (2014a) Genetic vs. non-genetic responses of leaf morphology and growth to elevation in temperate tree species. Funct Ecol 28:243–252. doi:10.1111/1365-2435.12161

    Article  Google Scholar 

  • Vitasse Y, Lenz A, Korner C (2014b) The interaction between freezing tolerance and phenology in temperate deciduous trees. Front Plant Sci 5:541. doi:10.3389/fpls.2014.00541

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Ives NE, Lechowicz MJ (1992) The relation of foliar phenology to xylem embolism in trees. Funct Ecol 6:469–475. doi:10.2307/2389285

    Article  Google Scholar 

  • Way DA, Montgomery RA (2014) Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ 38(9):1725–1736. doi:10.1111/pce.12431

    Article  PubMed  Google Scholar 

  • Weaver SJ, Kumar A, Chen MY (2014) Recent increases in extreme temperature occurrence over land. Geophys Res Lett 41:4669–4675. doi:10.1002/2014gl060300

    Article  Google Scholar 

  • Yordanov YS, Ma C, Strauss SH, Busov VB (2014) EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees. Proc Natl Acad of Sci USA 111:10001–10006. doi:10.1073/pnas.1405621111

    Article  CAS  Google Scholar 

  • Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci USA 107:22151–22156. doi:10.1073/pnas.1012490107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohner C, Renner S (2014) Common garden comparison of the leaf-out phenology of woody species from different native climates, combined with herbarium records, forecasts long-term change. Ecol Lett 17:1016–1025

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Becklin, J. Medeiros, K. Kluthe, E. Duffy, S. M. Walker II, T. Leibbrandt, and C. Bone for field assistance, as well as E. Luedeling, S.-J. Jeong, A. Richardson, M. Migliavacca, and M. T. Holder for helpful modeling advice. We thank the University of Kansas Field Station staff for maintaining the common garden. This work was supported by NSF CAREER and other IOS awards to JKW. An NSF C-CHANGE IGERT fellowship supported JMC. MEO and JKW also acknowledge University of Kansas GRF grants. The Department of Ecology and Evolutionary Biology and the University of Kansas Research Investment Council also provided funding.

Author contribution statement

JMC, MEO, RMM and JKW conceived and designed the experiments. JMC, LMG, JHS, RMM and JKW conducted field work, and MEO, JMC and JKW developed and performed modeling and statistical analyses. JMC, MEO, JN and JKW wrote the manuscript; all authors provided editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy K. Ward.

Additional information

Communicated by Tim Seastedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carter, J.M., Orive, M.E., Gerhart, L.M. et al. Warmest extreme year in U.S. history alters thermal requirements for tree phenology. Oecologia 183, 1197–1210 (2017). https://doi.org/10.1007/s00442-017-3838-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3838-z

Keywords

Navigation