Skip to main content

Advertisement

Log in

Apple orchard phenology response to desiccation and temperature changes in Urmia Lake region

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Agricultural production activities, such as those for various fruits and cereals, play a significant role in the local economy and food security of the Urmia Lake region. In particular, this region has thousands of hectares of apple orchards, which have an important socioeconomic impact on the life of people. Climate and land cover changes over the past several decades threaten the apple orchards phenology (AOP). Recent studies have emphasized the effect of temperature on plant phenology; however, they have overlooked the influence of land cover changes, such as Lake Desiccation, on plant phenology. Meanwhile, how climate change and Lake Desiccation will affect the AOP is still not very well understood. Therefore, in this study, we used the Enhanced Vegetation Index (EVI) extracted from remote sensing images acquired by the MODIS sensor spanning from 2003 to 2014, in order to extract the AOP events. Furthermore, we used a random forest regression (RFR) for analyzing the relationship between temperature changes/Lake Desiccation and AOP. The results revealed that EVI is a very useful tool for estimating the AOP with a mean root-mean-square error of 6.25 days. Moreover, there is a linear trend toward the early start of season in this region. The end of season (EOS) and the growing season length have also increased in the areas closer to the lake until 2008. This seems that the delayed EOS in the area closest to Urmia Lake has been associated with the lake microclimate since 2008.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel-Rahman EM, Van Den Berg M, Way MJ, Ahmed FB (2009) Hand-held spectrometry for estimating thrips (Fulmekiola serrata) incidence in sugarcane. Paper presented at the geoscience and remote sensing symposium, 2009 IEEE international, IGARSS 2009

  • Abdel-Rahman EM, Ahmed FB, Ismail R (2012) Random forest regression for sugarcane yield prediction in Umfolozi, South Africa based on Landsat TM and ETM + derived spectral vegetation indices. In: Goncalves JF, Correia KD (eds) Sugarcane: production, cultivation and uses. NOVA Science Publishers, Hauppauge, pp 257–284

    Google Scholar 

  • Abdel-Rahman EM, Ahmed FB, Ismail R (2013) Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data. Int J Remote Sens 34(2):712–728

    Article  Google Scholar 

  • Abu-Asab MS, Peterson PM, Shetler SG, Orli SS (2001) Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodivers Conserv 10(4):597–612

    Article  Google Scholar 

  • Adam E, Mutanga O (2009) Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry. Isprs J Photogramm 64(6): 612–620

  • Adam EM, Mutanga O, Rugege D, Ismail R (2012) Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent species using random forest and hyperspectral data resampled to HYMAP. Int J Remote Sens 33(2):552–569

    Article  Google Scholar 

  • Adam E, Mutanga O, Abdel-Rahman EM, Ismail R (2014) Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression. Int J Remote Sens 35(2):693–714

    Article  Google Scholar 

  • Archer KJ, Kimes RV (2008) Empirical characterization of random forest variable importance measures. Comput Stat Data Anal 52(4):2249–2260

    Article  Google Scholar 

  • Archibald SA, Kirton A, Van der Merwe MR, Scholes RJ, Williams CA, Hanan N (2009) Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa. Biogeosciences 6(2):251–266

    Article  CAS  Google Scholar 

  • Beijma V, Sybrand AC, Lamb A (2014) Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens Environ 149:118–129

    Article  Google Scholar 

  • Bradley BA, Jacob RW, Hermance JF, Mustard JF (2007) A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens Environ 106(2):137–145

    Article  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Brown ME, de Beurs K, Vrieling A (2010) The response of African land surface phenology to large scale climate oscillations. Remote Sens Environ 114(10):2286–2296

    Article  Google Scholar 

  • Brown ME, De Beurs KM, Marshall M (2012) Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26years. Remote Sens Environ 126:174–183

    Article  Google Scholar 

  • Chhin S, Ted Hogg EH, Lieffers VJ, Huang S (2008) Potential effects of climate change on the growth of lodgepole pine across diameter size classes and ecological regions. For Ecol Manag 256(10):1692–1703

    Article  Google Scholar 

  • Christopoulos DT, Maintainer DT (2014)  Package ‘RootsExtremaInflections’

  • Climate Change (2007) Intergovernmental panel on climate change. World Meteorological Organization

  • Creech TG, Epps CW, Monello RJ, Wehausen JD (2016) Predicting diet quality and genetic diversity of a desert-adapted ungulate with NDVI. J Arid Environ 127:160–170

    Article  Google Scholar 

  • Crepinsek Z, Stampar F, Kajfez-Bogataj L, Solar A (2012) The response of Corylus avellana L. phenology to rising temperature in north-eastern Slovenia. Int J Biometeorol 56(4):681–694

    Article  Google Scholar 

  • Delju AH, Ceylan A, Piguet E, Rebetez M (2013) Observed climate variability and change in Urmia Lake Basin, Iran. Theoret Appl Climatol 111(1–2):285–296

    Article  Google Scholar 

  • Diaz-Uriarte R, Andres SAD (2006) Gene selection and classification of microarray data using random forest. BMC Bioinform 7(1):1

    Article  Google Scholar 

  • Du J, He Z, Yang J, Chen L, Zhu X (2014) Detecting the effects of climate change on canopy phenology in coniferous forests in semi-arid mountain regions of China. Int J Remote Sens 35(17):6490–6507

    Article  Google Scholar 

  • Ehrlinger J (2015) ggRandomForests: random forests for regression

  • Eimanifar A, Mohebbi F (2007) Urmia Lake (northwest Iran): a brief review. Saline Syst 3(1):1

    Article  Google Scholar 

  • Eisavi V, Homayouni S, Yazdi AM, Alimohammadi A (2015) Land cover mapping based on random forest classification of multitemporal spectral and thermal images. Environ Monit Assess 187(5):1–14

    Article  Google Scholar 

  • Fadavi R, Keyhani A, Mohtasebi SS (2011) An analysis of energy use, input costs and relation between energy inputs and yield of apple orchard. Res Agric Eng 57(3):88–96

    Google Scholar 

  • Galan C, Garcia-Mozo H, Carinanos P, Alcazar P, Domnguez-Vilches E (2001) The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. Int J Biometeorol 45(1):8–12

    Article  CAS  Google Scholar 

  • Ghosh A, Sharma R, Joshi PK (2014) Random forest classification of urban landscape using Landsat archive and ancillary data: combining seasonal maps with decision level fusion. Appl Geogr 48:31–41

    Article  Google Scholar 

  • Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random forests for land cover classification. Pattern Recogn Lett 27(4):294–300

    Article  Google Scholar 

  • Gonzalez-Fernandez AB, Rodriguez-Perez JR, Marcelo V, Valenciano JB (2015) Using field spectrometry and a plant probe accessory to determine leaf water content in commercial vineyards. Agric Water Manag 156:43–50

    Article  Google Scholar 

  • Grab S, Craparo A (2011) Advance of apple and pear tree full bloom dates in response to climate change in the southwestern Cape, South Africa: 1973–2009. Agric For Meteorol 151(3):406–413

    Article  Google Scholar 

  • Grimm R, Behrens T, Marker M, Elsenbeer H (2008) Soil organic carbon concentrations and stocks on Barro Colorado Island—digital soil mapping using random forests analysis. Geoderma 146(1):102–113

    Article  CAS  Google Scholar 

  • Ham J, Chen Y, Crawford MM, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43(3):492–501

    Article  Google Scholar 

  • Hassanzadeh E, Zarghami M, Hassanzadeh Y (2012) Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water Resour Manag 26(1):129–145

    Article  Google Scholar 

  • Hereford R, Webb RH, Longpre CI (2006) Precipitation history and ecosystem response to multidecadal precipitation variability in the Mojave Desert region, 1893-2001. J Arid Environ 67:13–34

    Article  Google Scholar 

  • Heumann BW, Seaquist JW, Eklundh L, Jonsson P (2007) AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens Environ 108(4):385–392

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Huete A, Justice C, Liu H (1994) Development of vegetation and soil indices for MODIS-EOS. Remote Sens Environ 49(3):224–234

    Article  Google Scholar 

  • Huete AR, Liu HQ, Batchily KV, Van Leeuwen WJDA (1997) A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens Environ 59(3):440–451

    Article  Google Scholar 

  • Huete A, Didan K, Tomoaki Miura E, Rodriguez P, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1):195–213

    Article  Google Scholar 

  • Ismail R, Mutanga O (2010) A comparison of regression tree ensembles: predicting Sirex noctilio induced water stress in Pinus patula forests of KwaZulu-Natal, South Africa. Int J Appl Earth Obs Geoinf 12:S45–S51

    Article  Google Scholar 

  • Jonsson P, Eklundh L (2004) TIMESAT—a program for analyzing time-series of satellite sensor data. Comput Geosci 30(8): 833–845

    Article  Google Scholar 

  • Julien Y, Sobrino JA (2009) Global land surface phenology trends from GIMMS database. Int J Remote Sens 30(13):3495–3513

    Article  Google Scholar 

  • Karbassi A, Bidhendi GN, Pejman A, Bidhendi ME (2010) Environmental impacts of desalination on the ecology of Lake Urmia. J Great Lakes Res 36(3):419–424

    Article  CAS  Google Scholar 

  • Kremer RG, Running SW (1993) Community type differentiation using NOAA/AVHRR data within a sagebrush-steppe ecosystem. Remote Sens Environ 46(3):311–318

    Article  Google Scholar 

  • Kukush A, Markovsky I, Van Huffel S (2004) Consistent estimation in an implicit quadratic measurement error model. Comput Stat Data Anal 47(1):123–147

    Article  Google Scholar 

  • Lawrence RL, Wood SD, Sheley RL (2006) Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens Environ 100(3):356–362

    Article  Google Scholar 

  • Leeuwen V, Willem JD (2008) Monitoring the effects of forest restoration treatments on post-fire vegetation recovery with MODIS multitemporal data. Sensors 8(3):2017–2042

    Article  Google Scholar 

  • Legave J-M (2009) Comment faire face aux changements climatiques en arboriculture fruitiere?

  • Legave JM, Blanke M, Christen D, Giovannini D, Mathieu V, Oger R (2013) A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in Western Europe. Int J Biometeorol 57 (2):317–331

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by random Forest. R news 2(3): 18–22

    Google Scholar 

  • Liu L, Liang L, Schwartz MD, Donnelly A, Wang Z, Schaaf CB, Liu L (2015) Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest. Remote Sens Environ 160:156–165

    Article  Google Scholar 

  • Lopez G, DeJong TM (2007) Spring temperatures have a major effect on early stages of peach fruit growth. J Hortic Sci Biotechnol 82(4):507–512

    Article  Google Scholar 

  • Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25(12):2365–2401

    Article  Google Scholar 

  • Lu P, Qiang Yu, Liu J, Lee X (2006) Advance of tree-flowering dates in response to urban climate change. Agric For Meteorol 138(1):120–131

    Article  Google Scholar 

  • Miller-Rushing AJ, Katsuki T, Primack RB, Ishii Y, Lee SD, Higuchi H (2007) Impact of global warming on a group of related species and their hybrids: cherry tree (Rosaceae) flowering at Mt. Takao, Japan. Am J Bot 94(9):1470–1478

    Article  Google Scholar 

  • Morisette JT, Richardson AD, Knapp AK, Fisher JI, Graham EA, Abatzoglou J, Wilson BE, Breshears DD, Henebry GM, Hanes JM (2009) Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front Ecol Environ 7(5):253–260

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300(5625):1560–1563

    Article  CAS  Google Scholar 

  • Nizamuddin M, Akhand K, Roytman L, Kogan F, Goldberg M (2015) Using NOAA/AVHRR based remote sensing data and PCR method for estimation of Aus rice yield in Bangladesh. Paper presented at the SPIE Sensing Technology + Applications

  • Osborne CP, Chuine I, Viner D, Woodward FI (2000) Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ 23(7):701–710

    Article  Google Scholar 

  • Oukabli A, Mahhou A (2007) Dormancy in sweet cherry (Prunus avium L.) under Mediterranean climatic conditions. Biotechnol Agron Soc Environ 11(2):133–139

    Google Scholar 

  • Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26(1):217–222

    Article  Google Scholar 

  • Park S, Im J, Park S, Rhee J (2015) AMSR2 soil moisture downscaling using multisensor products through machine learning approach. Paper presented at the geoscience and remote sensing symposium (IGARSS), 2015 IEEE international

  • Penuelas J, Filella I, Zhang X, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161(3):837–846

    Article  Google Scholar 

  • Pope KS, Dose V, Da Silva D, Brown PH, Leslie CA, DeJong TM (2013) Detecting nonlinear response of spring phenology to climate change by Bayesian analysis. Glob Change Biol 19(5):1518–1525

    Article  Google Scholar 

  • Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9(2):181–199

    Article  Google Scholar 

  • Puissant A, Rougier S, Stumpf A (2014) Object-oriented mapping of urban trees using Random Forest classifiers. Int J Appl Earth Obs Geoinf 26:235–245

    Article  Google Scholar 

  • Schwartz MD (2003) Phenology: an integrative environmental science

  • Shklyar S, Kukush A, Markovsky I, Van Huffel S (2007) On the conic section fitting problem. J Multivar Anal 98(3):588–624

    Article  Google Scholar 

  • Solano R, Didan K, Jacobson A, Huete A (2010) MODIS vegetation index user’s guide (MOD13 series). Vegetation index and phenology lab

  • Tadesse T, Senay GB, Berhan G, Regassa T, Beyene S (2015) Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: a case study for Ethiopia. Int J Appl Earth Obs Geoinf 40:39–54

    Article  Google Scholar 

  • Team, R. Core (2012) R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2012). http://www.R-project.org

  • Touloie J (1998) Hydrogeochemistry of Urmia Lake. Paper presented at the first oceanology conference of Iran

  • Tourian MJ, Elmi O, Chen Q, Devaraju B, Roohi S, Sneeuw N (2015) A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sens Environ 156:349–360

    Article  Google Scholar 

  • Verikas A, Gelzinis A, Bacauskiene M (2011) Mining data with random forests: a survey and results of new tests. Pattern Recogn 44(2):330–349

    Article  Google Scholar 

  • Vermote EF, El Saleous NZ, Justice CO (2002) Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens Environ 83(1):97–111

    Article  Google Scholar 

  • Vincenzi S, Zucchetta M, Franzoi P, Pellizzato M, Pranovi F, De Leo GA, Torricelli P (2011) Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecol Model 222(8):1471–1478

    Article  Google Scholar 

  • Voss KA, Famiglietti JS, Lo M, Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris Euphrates Western Iran region. Water Resour Res 49(2):904–914

    Article  Google Scholar 

  • Walker JJ, De Beurs KM, Wynne RH (2014) Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data. Remote Sens Environ 144:85–97

    Article  Google Scholar 

  • Weiss JL, Gutzler DS, Allred Coonrod JE, Dahm CN (2004) Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA. J Arid Environ 58(2):249–272

    Article  Google Scholar 

  • White MA, De Beurs M, Kirsten KD, Inouye DW, Richardson AD, Jensen OP, O’Keefe J, Zhang G, Nemani RR (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob Change Biol 15(10):2335–2359

    Article  Google Scholar 

  • Wu C, Niu Z, Gao S (2010) Gross primary production estimation from MODIS data with vegetation index and photosynthetically active radiation in maize. J Geophys Res Atmos 115:D12127

    Article  Google Scholar 

  • Zaitchik BF, Evans JP, Geerken RA, Smith RB (2007) Climate and vegetation in the Middle East: interannual variability and drought feedbacks. J Clim 20(15):3924–3941

    Article  Google Scholar 

  • Zarghami M (2011) Effective watershed management; case study of Urmia Lake, Iran. Lake Reserv Manag 27(1):87–94

    Article  Google Scholar 

  • Zeinoddini M, Tofighi MA, Vafaee F (2009) Evaluation of dike-type causeway impacts on the flow and salinity regimes in Urmia Lake, Iran. J Great Lakes Res 35(1):13–22

    Article  CAS  Google Scholar 

  • Zhang X, Hodges JCF, Schaaf CB, Friedl MA, Strahler AH, Gao F (2001) Global vegetation phenology from AVHRR and MODIS data. Paper presented at the geoscience and remote sensing symposium, 2001. IGARSS’01. IEEE 2001 international

  • Zhang X, Friedl MA, Schaaf CB (2006) Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements. J Geophys Res Biogeosci 111:G04017

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the USGS for providing MODIS imagery and the R development team for making these software packages publicly available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Eisavi.

Additional information

Editorial responsibility: U.W. Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisavi, V., Homayouni, S. & Rezaei-Chiyaneh, E. Apple orchard phenology response to desiccation and temperature changes in Urmia Lake region. Int. J. Environ. Sci. Technol. 14, 1865–1878 (2017). https://doi.org/10.1007/s13762-017-1283-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1283-5

Keywords

Navigation