Skip to main content
Log in

Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Observed data showed the climatic transition from warm-dry to warm-wet in Xinjiang during the past 30 years and will probably affect vegetation dynamics. Here, we analyze the interannual change of vegetation index based on the satellite-derived normalized difference vegetation index (NDVI) with temperature and precipitation extreme over the Xinjiang, using the 8-km NDVI third-generation (NDVI3g) from the Global Inventory Modelling and Mapping Studies (GIMMS) from 1982 to 2010. Few previous studies analyzed the link between climate extremes and vegetation response. From the satellite-based results, annual NDVI significantly increased in the first two decades (1981–1998) and then decreased after 1998. We show that the NDVI decrease over the past decade may conjointly be triggered by the increases of temperature and precipitation extremes. The correlation analyses demonstrated that the trends of NDVI was close to the trend of extreme precipitation; that is, consecutive dry days (CDD) and torrential rainfall days (R24) positively correlated with NDVI during 1998–2010. For the temperature extreme, while the decreases of NDVI correlate positively with warmer mean minimum temperature (Tnav), it correlates negatively with the number of warmest night days (Rwn). The results suggest that the climatic extremes have possible negative effects on the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Food and Agric Org Rome 300(9):D05109

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  • Cao XM, Chan X, Bao AM, Wang Q (2011) Response of vegetation to temperature and precipitation in Xinjiang during the period of 1998–2009. J Arid Land 3(2):92–134

    Article  Google Scholar 

  • Chen Y, Deng H, Li B, Li Z, Xu C (2014) Abrupt change of temperature and precipitation extremes in the arid region of northwest China. Quat Int 336:35–43

    Article  Google Scholar 

  • Chen Y, Li Z, Fan Y, Wang H, Deng H (2015) Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ Res 139:11–19. doi:10.1016/j.envres.2014.12.029

    Article  Google Scholar 

  • Coops NC, Ferster CJ, Waring RH, Nightingale J (2009) Comparison of three models for predicting gross primary production across and within forested ecoregions in the contiguous United States. Remote Sens Environ 113(3):680–690

    Article  Google Scholar 

  • Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Kitching S (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res 118(5):2098–2118

    Google Scholar 

  • Donohue RJ, Roderick ML, McVicar TR (2012) Roots, storms and soil pores: incorporating key ecohydrological processes into Budyko’s hydrological model. J Hydrol 436:35–50

    Article  Google Scholar 

  • Eastman JR, Sangermano F, Machado EA, Rogan J, Anyamba A (2013) Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sens 5(10):4799–4818

    Article  Google Scholar 

  • Fang S, Yan J, Che M, Zhu Y, Liu Z, Pei H, Lin X (2013) Climate change and the ecological responses in Xinjiang, China: model simulations and data analyses. Quat Int 311:108–116

    Article  Google Scholar 

  • Fischer EM, Knutti R (2015) Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Chang. doi:10.1038/NCLIMATE2617

    Google Scholar 

  • Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Scholes RJ, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007—an earth observing satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158. doi:10.1016/j.rse.2012.01.017

    Article  Google Scholar 

  • Fensholt R, Rasmussen K, Nielsen TT, Mbow C (2009) Evaluation of earth observation based long term vegetation trends—intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOTVGT data. Remote Sens Environ 113(9):1886–1898

    Article  Google Scholar 

  • Gu L et al (2008) The 2007 eastern US spring freezes: increased cold damage in a warming world? Bioscience 58:253–262

    Article  Google Scholar 

  • Guo N, Zhu YJ, Wang JM, Deng CP (2008) The relationship between NDVI and climate element for 22 years in different vegetation areas of northwest China. J Plant Ecol 32(2):319–327 (In Chinese)

    Google Scholar 

  • Gomez-Mendoza L, Galicia L, Cuevas-Fernandez ML, Magana V, Gomez G, Palacio-Prieto JL (2008) Assessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationships. Int J Biometeorol 52(6):511–520. doi:10.1007/s00484-008-0147-6

    Article  Google Scholar 

  • Griffin KL et al (2002) Leaf respiration is differentially affected by leaf vs. stand-level night-time warming. Glob. Change Biol 8:479–485

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci U S A 109:E2415–E2423

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change, edited by Stocker T et al., Cambridge University Press, Cambridge and New York, NY

  • Kim Y, Kimball JS, Zhang K, McDonald KC (2012) Satellite detection of increasing northern hemisphere non-frozen seasons from 1979 to 2008: implications for regional vegetation growth. Remote Sens Environ 121:472–487

    Article  Google Scholar 

  • Li BF, Chen YN, Chen ZS, Li WH (2012b) Trends in runoff versus climate change in typical rivers in the arid region of northwest China. Quat Int 282:87–95

    Article  Google Scholar 

  • Li B, Chen Y, Shi X (2012a) Why does the temperature rise faster in the arid region of northwest China? J Geophys Res 117:D16115. doi:10.1029/2012JD017953

    Google Scholar 

  • Li B, Tao S, Dawson RW (2002) Relations between AVHRR NDVI and ecoclimatic parameters in China. INT J Rem Sens 23(5):989–999

    Article  Google Scholar 

  • Li QH, Chen YN, Shen YJ, Li XG, Xu JH (2011) Spatial and temporal trends of climate change in Xinjiang, China. J Geogr Sci 21(6):1007–1018

    Article  Google Scholar 

  • Li Z, Chen YN, Shen YJ, Liu YB, Zhang SH (2013) Analysis of changing pan evaporation in the arid region of northwest China. Water Resour Res 49(4):2205–2212

    Article  Google Scholar 

  • Li Z, Chen Y, Li W, Deng H, Fang G (2015) Potential impacts of climate change on vegetation dynamics in Central Asia. J Geophys Res Atmos 120:12, 345–112,356. doi:10.1002/2015JD023618

    Article  Google Scholar 

  • Li XB, Shi PJ (2000) Sensitivity analysis of variation in NDVI, temperature and precipitation in typical vegetation types across China. Acta Phytoecologica Sinica 24(3):379–382

    Google Scholar 

  • Li XH, Shi QD, Guo J, Bayindala CSL, Qi JG (2009) The response of NDVI to climate variability in northwest arid of China from 1981 to 2001. J Arid Land Res Environ 23(2):12–16 (In Chinese)

    Google Scholar 

  • Mu SJ, Yang HF, Li JL, Chen YZ, Gang CC, Zhou W, Ju WM (2013) Spatiotemporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. J Geogr Sci 23(2):231–246

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300(5626): 1560–1563

  • Peng S, Piao S, Ciais P, Myneni RB, Chen A, Chevallier F et al (2013) Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation. Nature 501(7465):88–92

    Article  Google Scholar 

  • Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett 39:L20714

    Article  Google Scholar 

  • Pinzon JE, Tucker CJ (2014) A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens 6(8):6929–6960

    Article  Google Scholar 

  • Piao SL, Mohammat A, Fang JY, Cai Q, Feng JM (2006) NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob Environ Chang 16:340–348

    Article  Google Scholar 

  • Piao SL, Fang JY, Zhou LLM, Guo QH, Henderson M, Ji W, Li Y, Tao S (2003) Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J Geophys Res D 108(14):1–13

    Google Scholar 

  • Piao S, Tan J, Chen A, Fu YH, Ciais P, Liu Q et al (2015) Leaf onset in the northern hemisphere triggered by daytime temperature. Nat Commun 6:6911. doi:10.1038/ncomms7911

    Article  Google Scholar 

  • Prasad PVV, Pisipati SR, Ristic Z, Bukovnik U, Fritz AK (2008) Impact of night-time temperature on physiology and growth of spring wheat. Crop Sci 48:2372–2380

    Article  Google Scholar 

  • Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci U S A 108:17905–17909

    Article  Google Scholar 

  • Roerink GJ, Menenti M, Soepboer W, Su Z (2003) Assessment of climate impact on vegetation dynamics by using remote sensing. Phys Chem Earth 28:103–109. doi:10.1016/S1474-7065(03)00011-1

    Article  Google Scholar 

  • Schmidt M, Klein D, Conrad C, Dech S, Paeth H (2014) On the relationship between vegetation and climate in tropical and northern Africa. Theor Appl Climatol 115:341–353

    Article  Google Scholar 

  • Shen M, Piao S, Jeong SJ, Zhou L, Zeng Z, Ciais P, Cheng DL, Huang M, Jin C, Li L Z, Li Y, Myneni R B, Yang K, Zhang GX, Zhang YJ, Yao TD (2015) Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc Natl Acad Sci 112(30): 9299-9304

  • Shi YF, Shen YP, Hu RJ (2002) Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China. J Glaciol Geocryol 24(3):219–226

    Google Scholar 

  • Shi Y, Shen Y, Kang E, Li D, Ding Y, Zhang G, Hu R (2007) Recent and future climate change in northwest China. Clim Chang 80(3–4):379–393

    Article  Google Scholar 

  • Shi Y, Shen Y, Li D, Zhang G, Ding Y, Hu R, Kang E (2003) Discussion on the present climate change from warm-dry to warm-wet in northwest China. Quaternary Sciences 23(2):152–164

    Google Scholar 

  • Turnbull MH, Murthy R, Griffin KL (2002) The relative impacts of day-time and night-time warming on photosynthetic capacity in Populus deltoides. Plant Cell Environ 25:1729–1737

    Article  Google Scholar 

  • Wan S, Xia J, Liu W, Niu S (2009) Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 90:2700–2710

    Article  Google Scholar 

  • Wang JS, Chen FH, Zhang GQ (2008) Temperature variations in arid and semi-arid areas in middle part of Asia during the last 100 years. Plateau Meteorol 27(5):1035–1045 (in Chinese)

    Google Scholar 

  • Wang Y, Shen Y, Chen Y, Guo Y (2013) Vegetation dynamics and their response to hydroclimatic factors in the Tarim River Basin, China. Ecohydrology 6(6):927–936

  • Wang J, Dong J, Liu J, Huang M, Li G, Running SW et al (2014a) Comparison of gross primary productivity derived from GIMMS NDVI3g, GIMMS, and MODIS in Southeast Asia. Remote Sens 6(3):2108–2133

    Article  Google Scholar 

  • Wang YF, Shen YJ, Sun FB, Chen YN (2014b) Evaluating the vegetation growing season changes in the arid region of northwestern China. Theor Appl Climatol 118(3):569–579

    Article  Google Scholar 

  • Wu M, Chen Y, Wang H, Sun G (2015) Characteristics of meteorological disasters and their impacts on the agricultural ecosystems in the northwest of China: a case study in Xinjiang. Geoenvironmental Disasters 2(1):1–10

    Article  Google Scholar 

  • Xu C, Chen Y, Yang Y, Hao X, Shen Y (2010) Hydrology and water resources variation and its response to regional climate change in Xinjiang. J Geogr Sci 20(4):599–612

    Article  Google Scholar 

  • Xu ZX, Chen YN, Li JY (2004) Impact of climate change on water resources in the Tarim River basin. Water Resour Manag 18:439–458

    Article  Google Scholar 

  • Xu Y, Yang J, Chen Y (2015) NDVI-based vegetation responses to climate change in an arid area of China. Theor Appl Climatol. doi:10.1007/s00704-015-1572-1

    Google Scholar 

  • Yao J, Chen Y (2015) Trend analysis of temperature and precipitation in the Syr Darya Basin in Central Asia. Theor Appl Climatol 120(3–4):521–531

    Article  Google Scholar 

  • Yang D, Sun F, Liu Z, Cong Z, Lei Z (2006) Interpreting the complementary relationship in nonhumid environments based on the Budyko and Penman hypotheses. Geophys Res Lett 33:L18402. doi:10.1029/2006GL027657

    Google Scholar 

  • Yang D, Sun F, Liu Z, Cong Z, Ni G, Lei Z (2007) Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resour Res 43:W04426. doi:10.1029/2006 WR005224

    Google Scholar 

  • Yang Y, Xu JH, Hong YL, Lv GH (2012) The dynamic of vegetation coverage and its response to climate factors in Inner Mongolia, China. Stoch Environ Res Risk Assess 26:357–373

    Article  Google Scholar 

  • Zeng FW, Collatz GJ, Pinzon JE, Ivanoff A (2013) Evaluating and quantifying the climate-driven interannual variability in global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) at global scales. Remote Sens 5(8):3918–3950

    Article  Google Scholar 

  • Zhu Z, Bi J, Pan Y, Ganguly S, Anav A, Xu L, Samanta A, Piao S, Nemani RR, Myneni RB (2013) Global data sets of vegetation leaf area index (LAI) 3 g and fraction of photosynthetically active radiation (FPAR) 3 g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens 5(2):927–948

    Article  Google Scholar 

  • Zhao Y, Yu Z, Chen F (2009) Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China. Quat Int 194(1):6–18

    Article  Google Scholar 

  • Zhao L, Yang Q, Han XY (2014) Spatial and temporal differences of extreme precipitation during 1961-2009 in Xinjiang, China. J Desert Res 34(2):550–557 (In Chinese)

    Google Scholar 

  • Zhang Q, Li J, Singh VP, Bai Y (2012) SPI-based evaluation of drought events in Xinjiang, China. Nat Hazards 64(1):481–492

    Article  Google Scholar 

  • Zhang XY, Goldberg M, Tarpley D, Friedl MA, Morisette J, Kogan F, Yu YY (2010) Drought-induced vegetation stress in southwestern North America. Environ Res Lett 5:024008. doi:10.1088/1748-9326/5/2/024008

    Article  Google Scholar 

  • Zhao X, Tan K, Zhao S, Fang J (2011) Changing climate affects vegetation growth in the arid region of the northwestern China. J Arid Environ 75(10):946–952. doi:10.1016/j.jaridenv.2011.05.007

    Article  Google Scholar 

  • Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research: Atmospheres (1984–2012) 106(D17):20069–20083

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group for producing and sharing the AVHRR GIMMS NDVI3g dataset. We also are grateful to the National Climate Central, China Meteorological Administration, for providing the meteorological data for this study. This work was supported in part by the Basic Research Operating Expenses of the Central level Non-profit Research Institutes (IDM201506), China Postdoctoral Science Foundation (2016M592915XB), and the National Natural Science Foundation of China (41605067, 41375101, and U1503181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaning Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Chen, Y., Zhao, Y. et al. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China. Theor Appl Climatol 131, 1503–1515 (2018). https://doi.org/10.1007/s00704-017-2058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2058-0

Navigation