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Introduction

The term “big data” refers to the massive 
amounts of digital information companies 
and governments collect about human 
beings and our environment. The amount 
of data generated is expected to double 
every two years, from 2500 exabytes in 2012 
to 40,000 exabytes in 2020. Security and 
privacy issues are magnified by the volume, 
variety, and velocity of big data. Large-scale 
cloud infrastructures, diversity of data sourc-
es and formats, the streaming nature of data 
acquisition and high-volume, inter-cloud 
migration all play a role in the creation of 
unique security vulnerabilities. 

It is not merely the existence of large 
amounts of data that creates new security 
challenges. In reality, big data has been col-
lected and utilized for several decades. The 
current uses of big data are novel because 
organizations of all sizes now have access to 
the information and the means to employ it. 
In the past, big data was limited to very large 
users such as governments and more size-
able enterprises that could afford to create 
and own the infrastructure necessary for 
hosting and mining large amounts of infor-
mation. These infrastructures were typically 
proprietary and isolated from general net-
works. Today, big data is cheaply and easily 
accessible to organizations large and small 
through public cloud infrastructure. Soft-
ware infrastructures such as Hadoop enable 
developers to easily leverage thousands of 
computing nodes to perform data-parallel 
computing. Combined with the ability to buy 
computing power on-demand from public 
cloud providers, such developments greatly 
accelerate the adoption of big data mining 
methodologies. As a result, new security 
challenges have arisen from the coupling 

of big data with public cloud environments, 
characterized by heterogeneous composi-
tions of commodity hardware with commod-
ity operating systems, as well as commodity 
software infrastructures for storing and 
computing on data. 

As big data expands through streaming 
cloud technology, traditional security mech-
anisms tailored to secure small-scale, static 
data on firewalled and semi-isolated net-
works are inadequate. For example, analyt-
ics for anomaly detection would generate 
too many outliers. Similarly, it is unclear 
how to retrofit provenance in existing cloud 
infrastructures. Streaming data demands 
ultra-fast response times from security and 
privacy solutions. 

This Cloud Security Alliance (CSA) document 
lists out, in detail, the best practices that 
should be followed by big data service pro-
viders to fortify their infrastructures. In each 
section, CSA presents 10 considerations for 
each of the top 10 major challenges in big 
data security and privacy. In total, this list-
ing provides the reader with a roster of 100 
best practices. Each section is structured as 
follows:

• What is the best practice?
• Why should it be followed? (i.e. what 
is the security/privacy threat thwarted by 
following the best practice?)
• How can the best practice be 
implemented?

This document is based on the risks and 
threats outlined in the Expanded Top Ten 
Big Data Security and Privacy Challenges.
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Secure Computations in Distributed 
Programming Frameworks

1.0

In distributed programming frameworks such as Apache Hadoop, it is important to ensure 
trustworthiness of mapper and secure data in spite of untrusted mappers. Also, it is necessary 
to prevent information leakage from mapper output. Hence, the following guidelines should 
be followed to ensure secure computations in distributed programming frameworks.

1.1 Establish initial trust

1.2 Ensure conformance with predefined 
security policies

1.1.1 Why?

1.2.1 Why?

To ensure trustworthiness of mappers.

To achieve a high level of security in computations.

1.1.2 How?

1.2.2 How?

Establish initial trust by making master authenticate worker using Kerberos authentication 
or equivalent when worker sends connection request to master. The authentication 
should be mutual to ensure authenticity of masters. Besides authentication, use of integrity 
measurement mechanisms, i.e. one using Trusted Platform Module (TPM), should be 
considered.

Periodically check security properties of each worker. For example, the master nodes 
Hadoop-policy.xml should check for a match with the worker nodes security policy.
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1.3 De-identify data

1.3.1 Why?

To prevent the identity of the data subject from being linked with external data. Such linking 
may compromise the subjects’ privacy. 

1.3.2 How?

All personally identifiable information (PII), such as name, address, social security number, 
etc., must be either masked or removed from data. In addition to PII, attention should also 
be given to the presence of quasi-identifiers, which include data items that can almost 
uniquely identify a data subject (e.g., zip code, date of birth, and gender). Technologies such 
as k-anonymity [Swe02] should be applied to reduce re-identification risks. 

1.4 Authorize access to files with predefined security policy

1.4.1 Why?

To ensure integrity of inputs to the mapper.

1.4.2 How?

Mandatory access control (MAC).

1.0 Secure Computations in Distributed Programming Frameworks (cont.)

1.5 Ensure that untrusted code does not leak 
information via system resources

1.5.1 Why?

To ensure privacy.

1.5.2 How?
Mandatory access control (MAC). Use Sentry for HBASE security using RBAC (role-based 
access controls). In Apache Hadoop, the block access token is configured to ensure that only 
authorized users are able to access the data blocks stored in data nodes.
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1.0 Secure Computations in Distributed Programming Frameworks (cont.)

1.6 Prevent information leakage through output

1.6.1 Why?

To ensure security and privacy. Data leakage may occur in many ways, which needs to be prevented 
(i.e. improper use of encryption). Debugging messages, uncontrolled output streams, logging 
functions and detailed error pages help attackers learn about the system and formulate attack plans.

1.6.2 How?

• Use function sensitivity to prevent information leakage. 
• Shadow execution (i.e. communication towards external networks to obtain software 
version updates) is another aspect that needs to be taken into consideration.
• Additionally, all data should be filtered on the network level (in-transit), in line with data 
loss prevention policies. 
• Sufficient de-identification of data also contributes to mitigation of the impact.

1.7 Maintain worker nodes 

1.7.1 Why?

To ensure proper functionality of worker nodes.

1.7.2 How?

Frequently check for malfunctioning worker nodes and repair them. Ensure they are configured correctly.

1.8 Detect fake nodes 

1.8.1 Why?
To avoid attacks in cloud and virtual environments.

1.8.2 How?

Build a framework to detect fake nodes introduced by creating snapshots of legitimate nodes.
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1.0 Secure Computations in Distributed Programming Frameworks (cont.)

1.9 Protect mappers

1.9.1 Why?

To avoid generating incorrect aggregate outputs.

1.9.2 How?

Detect the mappers returning wrong results due to malicious modifications.

1.10 Check for altered copies of data

1.10.1 Why?

To avoid attacks in cloud and virtual environments.

1.10.2 How?

Detect for the data nodes that are re-introducing the altered copies and check such nodes 
for their legitimacy. Hashing mechanism and cell timestamps of cell data will enforce integrity. 
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Security Best Practices for Non-
Relational Data Stores

2.0

Non-relational data stores such as NoSQL databases typically have very few robust security 
aspects embedded in them. Solutions to NoSQL injection attacks are not yet completely 
mature. With these limitations in mind, the following suggestions are the best techniques to 
incorporate while considering security aspects for non-relational data stores. 

2.1 Protect Passwords

2.2 Safeguard data by data encryption while at rest 

2.1.1 Why?

2.2.1 Why?

To ensure privacy.

To reliably protect data in spite of weak authentication and authorization techniques 
applied.

2.1.2 How?

2.2.2 How?

• By encryption or hashing using secure hashing algorithms.
• Use cryptographic hashing algorithms functions such as SHA2 (SHA-256 or higher) and 
SHA3.
• When hashing, use salt to counter offline, brute-force attacks.

Use strong encryption methods such as the Advanced Encryption Standard (AES), RSA, 
and Secure Hash Algorithm 2 (SHA-256). The storage of code and encryption keys must 
be separate from the data storage or repository. The encryption keys should be backed 
up in an offline, secured location.
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2.3 Use transport layer security (TLS) to establish 
connections and communication

2.4 Provide support for pluggable 
authentication modules

2.3.1 Why?

2.4.1 Why?

To maintain confidentiality while in transit; to establish trusted connections between the 
user and server; and to securely establish communication across participating cluster nodes.

To certify users are able to program to pluggable authentication module (PAM) interface by 
using PAM library API for authentication-related services.

2.3.2 How?

2.4.2 How?

Implement TLS/SSL (secure sockets layer) encapsulated connections. Ideally, each node 
is equipped with a unique public/private key pair and digital certificate so that client 
authentication is enabled.

Implement support for PAM. Hardening with benchmarks established by the Center for Internet 
Security and hardening at the operating system (OS) level (e.g., SELinux) can be considered.

2.5 Implement appropriate logging mechanisms

2.5.1 Why?

To expose possible attacks.

2.0 Security Best Practices for Non-Relational Data Stores (cont.)

2.5.2 How?

• Implement logging mechanisms according to industry standards, such as the NIST Log 
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2.6 Apply fuzzing methods for security testing

2.6.1 Why?

To expose possible vulnerabilities caused by insufficient input validation in NoSQL that 
engages hypertext transfer protocol (HTTP) to establish communication with users (e.g., 
cross-site scripting and injection). 

2.6.2 How?

• Provide invalid, unexpected or random inputs and test for them. Typical strategies 
include dumb fuzzing, which uses completely random input, and smart fuzzing, which 
crafts input data based on knowledge about the input format, etc.
• Guidelines are provided by the Open Web Application Security Project (OWASP) 
(https://www.owasp.org/index.php/Fuzzing), MWR InfoSecurity (https://www.
mwrinfosecurity.com/our-thinking/15-minute-guide-to-fuzzing/), etc. Fuzzing should 
be done at separate levels in a system, including the protocol level, data node level, 
application level, and so forth. 
• Use tools for fuzzing, such as Sulley.

2.7 Ensure appropriate data-tagging techniques

2.7.1 Why?

To avoid unauthorized modification of data while piping data from its source.

2.7.2 How?

Use security-tagging techniques that mark every tuple arriving on a specified data source 
with a special, immutable security field including timestamp.

Management Guide SP800-92 [KS06] and ISO27002 [ISO05].
• Use advanced persistent threat (APT) logging mechanisms like log4j, etc. For example, ELK 
Stack (Elasticsearch, Logstash, Kibana) and Splunk can be used for log monitoring and on-
the-fly log analysis.

2.0 Security Best Practices for Non-Relational Data Stores (cont.)
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2.8 Control communication across cluster

2.9 Ensure data replication consistency

2.8.1 Why?

2.9.1 Why?

To ensure a secure channel.

To handle node failures correctly.

2.8.2 How?

2.9.2 How?

Ensure each node validates the trust level of other participating nodes before establishing a 
trusted communication channel.

Use intelligent hashing algorithms and ensure that the replicated data is consistent across 
the nodes, even during node failure.

2.10 Utilize middleware layer for security to encapsulate 
underlying NoSQL stratum

2.10.1 Why?

To have a virtual secure layer.

2.10.2 How?

By inducing object-level security at the collection, or column-level through the middleware, 
retaining its thin database layer.

2.0 Security Best Practices for Non-Relational Data Stores (cont.)

16CLOUD SECURITY ALLIANCE Big Data Working Group Guidance
© Copyright 2016, Cloud Security Alliance. All rights reserved.



Secure Data Storage and 
Transactions Logs

3.0

Security is needed in big data storage management because solutions, such as auto tiering, 
do not record the storage place of data. The following practices should be implemented to 
avoid security threats.

3.1 Implement exchange of signed message digests

3.1.1 Why?

To address potential disputes.

3.1.2 How?

• Use common message digests (SHA-2 or stronger) to provide digital identifier for each 
digital file or document, which is then digitally signed by the sender for non-repudiation.
• Use the same message digest for identical documents.
• Use distinct message digests even if the document is partially altered.

3.2 Ensure periodic audit of chain hash or persistent 
authenticated dictionary (PAD)

3.2.1 Why?

To solve user freshness and update serializability issues.

3.2.2 How?

Use techniques such as red-black tree and skip lists data structures to implement PAD 
[AGT01].
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3.3.1 Why?

To store data securely on untrusted servers

3.3.2 How?

Use SUNDR (secure untrusted data repository) to detect any attempts at unauthorized file 
modification by malicious server operators or users. It is also effective to detect integrity or 
consistency failures in visible file modifications using fork consistency.

3.0 Secure Data Storage and Transactions Logs (cont.)

3.4 Use broadcast encryption

3.4.1 Why?

To improve scalability.

3.4.2 How?

Use broadcast encryption scheme [FN 93] in which a broadcaster encrypts a message 
for some subset S of users who are listening on a broadcast channel. Any user in S 
can use a private key to decrypt the broadcast. However, even if all users outside of 
S collude, they can obtain no information about the content of the broadcast. Such 
systems are said to be collusion resistant. The broadcaster can encrypt to any subset S 
of his choice. It may still be possible that some members of S may contribute to piracy 
by constructing a pirate decoder using private keys assigned to them. To ascertain the 
identities of such malicious members—and thereby discourage piracy—traitor-tracing 
mechanisms should be implemented as well.

3.3 Employ SUNDR
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3.0 Secure Data Storage and Transactions Logs (cont.)

3.5 Apply lazy revocation and key rotation

3.5.1 Why?

To improve scalability.

• Use lazy revocation (i.e. delay re-encryption until a file is updated in order to make 
revocation operation less expensive). 
• To implement lazy revocation, generate a new filegroup for all the files that are modified 
following a revocation and then move files to this new filegroup as files get re-encrypted. 
This process raises two issues, as stated below:

 Issue: There is an increase in the number of keys in the system following each    
 revocation.
 Solution: Relate the keys of the filegroups that are involved.

 Issue: Because file sets that are re-encrypted following successive revocations are   
 not really contained within each other, it becomes increasingly difficult to determine   
 which filegroup a file should be assigned to when it is re-encrypted. 
 Solution: Use key rotation. Set up the keys so that files are always (re)encrypted with   
 the keys of the latest filegroup. This ensures that users are required to remember only  
 the latest keys and derive previous ones when necessary.

3.5.2 How?

3.6 Implement proof of retrievability (POR) or provable 
data possession (PDP) methods with high probability

3.6.1 Why?

To enable a user to reliably verify that data uploaded to the cloud is actually available and 
intact, without requiring expensive communication overhead

3.6.2 How?

Ateniese et al. [ABC+07] introduced a model for provable data possession (PDP) that allows a 
user that has stored data at an untrusted server to verify that the server possesses the original 
data without retrieving it. The model generates probabilistic proof of possession by sampling 
random sets of blocks from the server, which drastically increases efficiency. The user 
maintains a constant amount of metadata to verify the proof. The challenge/response protocol 
transmits a small, constant amount of data, which minimizes network communication. 
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Kaliski and Juels [JK07] developed a somewhat different cryptographic building block known 
as a proof of retrievability (POR). A POR enables a user to determine whether it can “retrieve” 
a file from the cloud. More precisely, a successfully executed POR assures a verifier that the 
prover presents a protocol interface through which the verifier can retrieve the given file in its 
entirety. Of course, a prover can refuse to release the file even after successfully participating 
in a POR. A POR, however, provides the strongest possible assurance of file retrievability 
barring changes in prover behavior.

3.7 Utilize policy-based encryption system (PBES7)

3.7.1 Why?

To avoid collusion attacks (assuming users do not exchange their private keys).

3.7.2 How?

• Allow user to encrypt a message with respect to a credential-based policy formalized as 
monotone Boolean expression written in standard, normal form.
• Provide encryption so that only a user having access to a qualified set of credentials for the 
policy is able to successfully decrypt the message.

3.8 Implement mediated decryption system

3.8.1 Why?

To avoid collusion attacks (assuming users are willing to exchange private keys without 
exchanging decrypted content).

3.8.2 How?

A mediated RSA cryptographic method and system is provided in which a sender encrypts 
a message (m) using an encryption exponent e and a public modulus n, and a recipient and 
a trusted authority cooperate with each other to decrypt the encrypted message by using 
respective components dU, dT of a decryption exponent. In order to prevent the trusted 
authority from reading the message in the event that it has access to the recipient decryption 
exponent components dU, the recipient blinds the encrypted message before passing it to 
the trusted authority. This blinding is affected by a modulo-n blinding operation using a factor 
r<e> where r is a secret random number. The trusted authority then applies its decryption 
exponent component dT to the message and returns the result to the recipient who cancels 
the blinding and applies its decryption exponent component dU to recover the message.

3.0 Secure Data Storage and Transactions Logs (cont.)
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3.9 Use digital rights management

3.9.1 Why?

To counter collusion attacks where users are willing to exchange decrypted contents 
when access control is implemented by means of encryption

3.9.2 How?

Digital rights management (DRM) schemes are various access control technologies 
that are used to restrict usage of copyrighted works. Such a scheme is also effective 
to control access to protected data in a distributed system environment. To prevent 
unauthorized access to protected information, some frameworks restrict options 
for accessing content. For instance, the protected content can only be opened on a 
specific device or with particular viewer software, where access rights and/or policies 
are securely enforced (perhaps at the hardware level). Moreover, the integrity of such 
software or devices can be attested by a cloud storage provider, etc., by means of 
remote attestation techniques and/or TPM (Trusted Platform Module) when necessary. 

3.10 Build secure cloud storage on top of 
untrusted infrastructure

3.10.1 Why?

To store information in a confidential, integrity-protected way—even with untrusted cloud 
service providers—while retaining service availability, reliability and the ability for efficient 
data retrieval and flexible data sharing

3.10.2 How?

One solution for implementing a secure cloud storage system is called cryptographic 
cloud storage [KL10]. This storage technique employs symmetric encryption, searchable 
encryption [BW07, CJJ+13], attribute-based encryption [SW05], and proof of storage (namely 
proof of retrievability [JK07] and provable data possession [ABC+07]). Using cryptographic 
cloud storage, a data owner can store encrypted data while keeping encryption keys locally. 
Moreover, data integrity can be verified efficiently at any time. Thereby, it can address major 
challenges, including: regulatory compliance; geographic restrictions; subpoenas; security 
breaches; electronic discovery; and data retention and destruction. 

3.0 Secure Data Storage and Transactions Logs (cont.)
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Endpoint Input Validation/Filtering4.0

Users should ensure that the source of data is not malicious and—if it is—should filter 
malicious input materials generated by that source. This challenge becomes more 
severe with the utilization of the “bring your own device” (BYOD) model. The following are 
recommended practices to achieve the best-possible input validation/filtering results.

4.1 Use trusted certificates

4.2 Do resource testing

4.1.1 Why?

4.2.1 Why?

To ensure trust in communication and prevent Sybil attacks (i.e. a single entity 
masquerading as multiple identities).

To avoid the drawback of managing certificates in a large enterprise but still achieve a 
minimal defense against Sybil attacks instead of preventing them.

4.1.2 How?

The digital certificate certifies the ownership of a public key by the named subject of 
the certificate. This allows others (relying parties) to trust that signatures or assertions 
made by the private key (that correspond to the public key) are certified. In this model, 
a certificate authority (CA) is a trusted third party that is trusted by both the subject 
(owner) of the certificate and the party relying upon the certificate. CAs are characteristic 
of many public key infrastructure (PKI) schemes. There exist several open-source 
implementations of certificate authority software. Common to all is that they provide the 
necessary services to issue, revoke and manage digital certificates. Some open-source 
implementations are DogTag, EJBCA, gnoMint, OpenCA, OpenSSL, r509, and XCA. Validity 
of certificates must be verified before usage based on a periodically issued certificate 
revocation list (CRL) or via OCSP (Online Certificate Status Protocol). If a central authority 
ensures that a unique certificate is assigned to each entity in a system, then an attacker 
cannot fake multiple identities. A trusted certificate is the only reliable method to defend 
against Sybil attacks.
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4.2.2 How?

Resource testing [Dou02] is a commonly implemented solution to averting Sybil attacks. It 
assumes that the computing resources of each node are limited. A verifier then checks whether 
each identity has as many resources as the single physical device it is associated with [BS12]. 

Determine if multiple fake identities possess fewer resources than expected from independent 
genuine identities. Examples of resources are computing capability, storage capability, and 
network bandwidth.

4.3 Use statistical similarity detection techniques and 
outlier detection techniques 

4.3.1 Why?

To detect and filter out malicious input.

4.3.2 How?

• Generate models that represent “normal” behavior (e.g., a Gaussian curve, and then detect 
outliers that deviate from normal input, or entities that largely deviate from the Gaussian curve).
• Use a model-based approach, proximity-based approach, and an angle-based approach to 
detect and filter out malicious input.

4.4 Detect and filter malicious inputs at central 
collection system

4.4.1 Why?

To block malicious input data without requiring extra computation in resource-
constrained endpoint devices.

4.4.2 How?
• Generate models that represent “normal” behavior (e.g., a Gaussian curve, and then detect 
outliers that deviate from normal input, or entities that largely deviate from the Gaussian curve).
• Use a model-based approach, proximity-based approach, and an angle-based approach to 
detect and filter out malicious input.

4.0 Enpoint Input Validation/Filtering (cont.)
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4.5 Secure the system against Sybil attacks

4.6 Identify plausible ID spoofing attacks on the system

4.5.1 Why?

4.6.1 Why?

To detect and prevent one entity from masquerading as multiple identities in a system.

To detect and prevent an attacker from assuming legitimate identities.

4.5.2 How?

4.6.2 How?

• Trusted certificates (Section 4.1)
• Trusted devices (Section 4.7)
• Resource testing (Section 4.2)

• Trusted certificates (Section 4.1)
• Trusted devices (Section 4.7)
• Resource testing (Section 4.2)

4.7 Employ trusted devices

4.7.1 Why?

To detect and prevent Sybil attacks and to prevent the compromise of endpoint devices 
and applications running on them.

4.0 Enpoint Input Validation/Filtering (cont.)

4.7.2 How?

Every entity in a system is assigned to an endpoint device with an embedded unique 
device identifier, which is tied to a user identity in a 1-to-1 manner (e.g., a secure device 
identity defined in IEEE 802.1AR). Then an attacker cannot create multiple identities 
using a single device and the cost of acquiring multiple devices will be prohibitive.
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4.8 Design parameter inspectors to examine 
incoming parameters

4.8.1 Why?

To detect and filter out malicious inputs. 

4.8.2 How?

Every data collection system has to implement its own inspector that checks for required 
properties and formats in the incoming parameters.

4.9 Incorporate tools to manage endpoint devices

4.9.1 Why?

To prevent an attacker from compromising endpoint devices and applications running 
on the devices.

4.9.2 How?

We can use Tools, such as TPMs to ensure the integrity of devices and applications, 
should be utilized. Protection mechanisms such as access control and antivirus 
products and/or host-based intrusion detection systems on endpoint devices should 
also be used. Information flow control and mandatory access control within each device 
is also important for device management. Logging and monitoring tools to detect 
compromises can also be employed.

4.0 Enpoint Input Validation/Filtering (cont.)
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4.10 Use antivirus and malware protection systems 
at endpoints

4.10.1 Why?

To prevent an attacker from compromising endpoint devices and applications running 
on the devices.

4.10.2 How?

Install antivirus and malware protection systems at endpoints. Users should keep the 
antivirus signature database up-to-date.

4.0 Enpoint Input Validation/Filtering (cont.)
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5.1 Apply big data analytics to detect anomalous 
connections to cluster

5.1.1 Why?

To ensure only authorized connections are allowed on a cluster, as this makes up part 
of the trusted big data environment.

Real-Time Security/Compliance Monitoring5.0

Big data is generated by a variety of different gadgets and sensors, including security 
devices. Real-time security and compliance monitoring is a double-edged sword. On 
one hand, big data infrastructures have to be monitored from a security point of view. 
Questions—is the infrastructure still secure? are we under attack?—need to be answered. 
On the other hand, entities that utilize big data can provide better security analytics 
compared to those who do not (e.g., less false positives, more fine-grained and better 
quantified security overviews, etc.). The following practices should be implemented to 
adhere to best practices for real-time security/compliance monitoring.

5.1.2 How?

Use solutions like TLS/SSL, Kerberos, Secure European System for Applications in a Multi-
Vendor Environment (SESAME), Internet protocol security (IPsec), or secure shell (SSH) to 
establish trusted connections to and–if needed–within a cluster to prevent unauthorized 
connections. Use monitoring tools, like a security information and event management 
(SIEM) solution, to monitor anomalous connections. This could be, for instance, based 
on connection behavior (e.g., seeing a connection from a ‘bad Internet neighborhood’) or 
alerts being filed in the logs of the cluster systems, indicating an attempt to establish an 
unauthorized connection.

5.2 Mine logging events

5.2.1 Why?

To ensure that the big data infrastructure remains compliant with the assigned risk 
acceptance profile of the infrastructure. 
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5.2.2 How?

• Mine the events in log files to monitor for security, like in a SIEM tool.
• Apply other algorithms or principles to mine events (such as machine learning) to get 
potential new security insights. 

5.3 Implement front-end systems

5.3.1 Why?

To parse requests and stop bad requests. Front-end systems are not new to security. 
Examples are routers, application-level firewalls and database-access firewalls. These 
systems typically parse the request (based on, for instance, syntax signatures or behavior 
profiles) and stop bad requests. The same principle can be used to focus on application or 
data requests in a big data infrastructure environment (e.g., MapReduce messages).

5.3.2 How?

Deploy multi-stage levels of front-end systems. For example, utilize a router for the network; 
an application-level firewall to allow/block applications; and a dedicated big data front-end 
system to analyze typical big data inquiries (like Hadoop requests). Additional technology, 
such a software defined network (SDN), may be helpful for implementation and deployment. 

5.4 Consider cloud-level security

5.4.1 Why?

To avoid becoming the “Achilles heel” of the big data infrastructure stack. Big data 
deployments are moving to the cloud. If such a deployment lives on a public cloud, this 
cloud becomes part of the big data infrastructure stack. 

5.4.2 How?

• Download “CSA Guidance for Critical Areas of Focus in Cloud Computing V3.0” 
• Implement other CSA best practices.
• Encourage Cloud Service Providers to become CSA STAR-certified compliant.

5.0 Real-Time Security/Compliance Monitoring (cont.)
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5.5 Utilize cluster-level security

5.5.1 Why?

To ensure that security methodology for big data infrastructure is approached from multiple 
levels. Different components make up this infrastructure—the cluster being one of them. 

5.5.2 How?

Apply—where applicable—best security practices for the cluster. These include:
• Use Kerberos or SESAME in a Hadoop cluster for authentication.
• Secure the Hadoop distributed file system (HDFS) using file and directory permissions.
• Utilize access control lists for access (e.g., role-based, attribute-based).
• Apply information flow control using mandatory access control.
 
The implementation of security controls also (heavily) depends on the cluster distribution being 
used. In case of strict security requirements (e.g., high confidentiality of the data being used), 
consider looking at solutions like Sqrrl, which provide fine-grained access control at the cell level. 

5.6 Apply application-level security

5.6.1 Why?

To secure applications in the infrastructure stack. Over the last years, attackers have 
shifted their focus from operating systems to databases to applications. 

5.6.2 How?

• Apply secure software development best practices, like OWASP (owasp.org) for Web-based 
applications.
• Execute vulnerability assessments and application penetration tests on the application on 
an ongoing and scheduled basis.

5.0 Real-Time Security/Compliance Monitoring (cont.)

5.7 Adhere to laws and regulations

5.7.1 Why?

To avoid legal issues when collecting and managing data. Due to laws and regulations 
that exist worldwide—specifically those that relate to privacy rights—individuals who 
gather data cannot monitor or use every data item collected. While many regulations 
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are in-place to protect consumers, they also create a variety of challenges in the 
universe of big data collection that will hopefully be resolved over time. 

5.7.2 How?

Follow the laws and regulations (i.e. privacy laws) for each step in the data lifecycle. These include:
• Collection of data
• Storage of data
• Transmission of data
• Use of data
• Destruction of data

5.8 Reflect on ethical considerations

5.8.1 Why?
To address both technical and ethical questions that may arise. The fact that one has Big 
Data doesn’t necessarily mean that one can just use that data. There is always a fine line 
between (1) technically possible; and (2) what is ethically correct. The latter is also impacted 
and related to legal regulations and the organization’s culture, among other factors. 

5.8.2 How?

There are no clear guidelines concerning ethical considerations related to big data 
usage. At minimum, big data users must take into account all applicable privacy and 
legal regulations. Additionally, users should consider ethical discussions related to their 
organizations, regions, businesses, and so forth. 

5.0 Real-Time Security/Compliance Monitoring (cont.)

5.9 Monitor evasion attacks

5.9.1 Why?

To avoid potential system attacks and/or unauthorized access. Evasion attacks are 
meant to circumvent big data infrastructure security measures and avoid detection. It is 
important to minimize these occurrences as much as possible.

5.9.2 How?

As evasion attacks evolve constantly, it is not always easy to stop them. Following the 
implementation of a defense in-depth concept, consider applying different monitor 
algorithms (like machine learning) to mine the data. Look for insights related to potential 
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5.10 Track data-poisoning attacks

5.10.1 Why?

To prevent monitoring systems from being misled, crashing, misbehaving or providing 
misinterpreted data due to malformed data. These type of attacks are aimed at falsifying 
data, letting the monitoring system believe nothing is wrong. 

evasion of monitoring besides signature-based/rule-based/anomaly-based/specification-
based detection schemes. 

• Consider applying front-end systems and behavioral methods to perform input 
validation, process the data, and determine right from wrong as much as possible.
• It is also crucial to authenticate sources of data and maintain logs not only for 
preventing unauthorized data injection but also for establishing accountability.
• Utilize the monitoring system for strange behavior, like a spike in the central 
processing unit (CPU) and memory load for prolonged periods of time, or disk space 
running full quickly.

5.10.2 How?

5.0 Real-Time Security/Compliance Monitoring (cont.)
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Scalable and Composable Privacy-
Preserving Analytics

6.0

Studies show that anonymizing data for analytics is insufficient for ensuring user privacy. 
Below are the best techniques to ensure privacy in a big data environment. 

6.1 Implement differential privacy

6.1.1 Why?

6.1.1 Why?

To protect privacy even when data is linked with external data sources. Anonymizing 
public records have failed when researchers manage to identify personal information by 
linking two or more separately innocuous databases

6.1.2 How?

Differential privacy [Dwo06] aims to provide a means to maximize the accuracy of 
queries from statistical databases while minimizing the chances of identifying its 
records. Differential privacy is the mathematical concept to measure how much (or how 
little) anonymity is preserved on a database. For example, adding random noise is a 
method to achieve some level of differential privacy. Users are encouraged to use the 
appropriate mechanism for a given use.

6.2.1 Why?

To enable encrypted data to be stored and processed on the cloud. Data stored in 
plaintext on the cloud may be compromised and cause privacy risks. On the other hand, 
when only encrypted data is stored on the cloud, utility of data is significantly limited.

6.2.2 How?

Homomorphic encryption is a form of encryption that allows specific types of 
computations to be carried out on ciphertext. The method allows users to obtain an 
encrypted result that, when decrypted, matches the result of operations performed on 

6.2 Implement Utilize homomorphic encryption
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the plaintext. Users should utilize techniques such as unpadded RSA for implementing 
partially homomorphic cryptosystems.

6.3 Maintain software infrastructure

6.3.1 Why?

To avoid exploitation of improperly maintained software, a major vulnerability.

6.3.2 How?

Maintain software infrastructure patched with up-to-date security solutions.

6.4 Use separation of duty principle

6.4.1 Why?

To provide robust internal control as well as information security. The separation of duty 
principle—coupled with the enforcement of the principle of least privilege—provides 
both attributes.

6.4.2 How?
Implement security controls which enforce strict separation of duties so that each 
operator has access to a specific set of minimal data and is only able to perform a 
specified set of actions on that data. Institute auditing of user actions on the system. To 
enforce reliable separation, access to shared resources should be carefully monitored 
or controlled to detect and/or block covert channels.

6.5 Be aware of re-identification techniques

6.5.1 Why?

To protect the privacy interests of consumers. Re-identification is the process 
by which anonymized personal data is matched with its true owner. Personal 
identifiers—such as names and social security numbers—are often removed 
from databases containing sensitive information. However, re-identification 
compromises consumer privacy.

6.0 Scalable and Composable Privacy-Preserving Analytics (cont.)
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6.5.2 How?

• Anonymized (or de-identified) data safeguards the privacy of consumers while still 
making useful information available to marketers or data-mining companies. 
• Establish a formal standard for privacy which addresses possible re-identification 
methods.

6.6 Incorporate awareness training with focus on 
privacy regulations

6.6.1 Why?

To avoid potential litigation issues into the future. There are an increasing number of 
laws and regulations that require training and awareness activities related to privacy 
issues (e.g., the Health Insurance Portability and Accountability Act (HIPPA) and Health 
Information Technology for Economic and Clinical Health Act (HITECH) in the U.S., etc.). 
Awareness of these laws and regulations is critical.

6.6.2 How?

Implement awareness training focused on privacy issues and applicable regulations in 
each country.

6.7 Use authorization mechanisms

6.7.1 Why?

To secure applications in the infrastructure stack. Over the last years, attackers have 
shifted their focus from operating systems to databases to applications. 

6.7.2 How?

• Apply secure software development best practices, like OWASP (owasp.org) for Web-
based applications.
• Execute vulnerability assessments and application penetration tests on the application 
on an ongoing and scheduled basis.

6.0 Scalable and Composable Privacy-Preserving Analytics (cont.)
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6.8 Encrypt data at rest

6.9 Implement privacy-preserving data composition

6.8.1 Why?

6.9.1 Why?

To prevent access to sensitive information. Threats against end user devices may allow 
unauthorized parties to access personal information. To prevent such inappropriate 
disclosures, particularly of personally identifiable information (PII) and other sensitive 
data, the confidentiality of data needs to be secured on the devices.

6.8.2 How?

The primary security control for restricting access to sensitive information stored on 
end-user devices is encryption. Encryption can be applied granularly, such as to an 
individual file containing sensitive information, or broadly, such as encrypting all stored 
data. In the case of database infrastructure, primary keys are used for indexing and 
joining tables. Therefore, encryption may not be applicable. Sensitive data, such as 
personally identifiable information, should not be used as a primary key. Ensure that the 
encryption algorithm used is current and appropriate for the given data set.

To address privacy concerns preemptively. In some real-world circumstances (such as those 
that may occur in the healthcare industry), it is often necessary to aggregate and/or query 
data from multiple data sources, such as electronic healthcare record systems in multiple 
hospitals or research institutes. Privacy issues are likely to emerge during that process.

6.9.2 How?

Ensure that leakage of private information is controlled when multiple databases and/or 
services are linked by reviewing and monitoring the functionality that links them.

6.10 Design and implement linking anonymized datastores

6.10.1 Why?

To ensure privacy. Even if data in each datastore is anonymized (i.e. personally 
identifiable information is appropriately removed), this is not often sufficient if multiple 

6.0 Scalable and Composable Privacy-Preserving Analytics (cont.)
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datastores are linked. For example, more than 80 of American citizens can be uniquely 
identified using a combination of birthdate, gender, and zip code.

6.10.2 How?

For each datastore, implement privacy concepts like k-anonymity [Swe02], t-closeness 
[LLV07] and/or l-diversity [MKG07] as well as differential privacy. 

6.0 Scalable and Composable Privacy-Preserving Analytics (cont.)

36CLOUD SECURITY ALLIANCE Big Data Working Group Guidance
© Copyright 2016, Cloud Security Alliance. All rights reserved.



Cryptographic Technologies for 
Big Data

7.0

The advent of big data has heralded a revolution of sophisticated new techniques in 
cryptography to address the security of massive, streaming and increasingly private data. 
There is a realization across the industry that cryptographic technologies are imperative for 
cloud storage and big data. Mathematical assurance of trust gives people more incentive to 
migrate data and computations to the cloud. Rather than burdensome requirements, there 
is an increased perception that cryptographic technologies are harbingers of trusted utility 
for impending advances in information technology. This section will highlight a few of the 
exciting new research directions that the cryptography community is beginning to explore, 
as well as best practices for cryptographic technologies for big data.

7.1 Construct system to search, filter for 
encrypted data

7.1.1 Why?

To balance data confidentiality and data utility. Consider a system to receive e-mails 
encrypted under the owner’s public key. It’s likely the owner does not want to receive 
spam. With plain public key encryption, there is no way to distinguish a legitimate e-mail 
ciphertext from a spam ciphertext. In this way, encryption often lowers effectiveness of 
information security technologies as well as usability of data. 

7.1.2 How?

Boneh and Waters [BW07] construct a public key system that supports comparison 
queries, subset queries and arbitrary conjunction of such queries. In a recent paper 
[CJJ+13], Cash et al., present the design, analysis and implementation of the first sub-
linear searchable symmetric encryption (SSE) protocol that supports conjunctive search 
and general Boolean queries on symmetrically encrypted data. The protocol scales to 
very large data sets and arbitrarily structured data, including free text search.
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7.2 Secure outsourcing of computation using fully 
homomorphic encryption

7.2.1 Why?

To enable outsourcing of computation while addressing security and privacy concerns. 
Consider a user who wants to send all sensitive data to a cloud: photos, medical 
records, financial records and so on. The user could send everything encrypted, but this 
wouldn’t be much use if they wanted the cloud to perform various computations on 
them, such as how much money was spent on movies in the past month. 

7.2.2 How?
In a breakthrough result [Gen09] in 2009, Gentry constructed the first fully 
homomorphic encryption scheme. Such a scheme allows users to compute the 
encryption of arbitrary functions of the underlying plaintext. Earlier results [BGN05] 
constructed partially homomorphic encryption schemes. Gentry’s original construction 
of a fully homomorphic encryption (FHE) scheme used ideal lattices over a polynomial 
ring. Although lattice constructions are not terribly inefficient, the computational 
overhead for FHE is still far from practical. Research is ongoing to find simpler 
constructions [vDGHV10, CMNT11], efficiency improvements [GHS12b, GHS12a] and 
partially homomorphic schemes [NLV11].

7.3 Limit features of homomorphic encryption for 
practical implementation

7.3.1 Why?

To balance computational cost and versatility when handling encrypted data. Although 
fully homomorphic encryption is an ideal solution in terms of versatility, the computation 
cost is still too high to be practical.

7.3.2 How?

By limiting features of homomorphic encryption (e.g., limiting only to additive 
homomorphic operations or to certain types of fundamental statistical computations, 
such as inner product) the practicality of homomorphic encryption schemes 
dramatically improve while retaining real-world applicability. 

7.0 Cryptographic Technologies for Big Data (cont.)
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7.4 Apply relational encryption to enable comparison 
of encrypted data

7.4.1 Why?

To enable efficient comparison of encrypted data without sharing encryption keys. Typically, 
each organization protects its data by using its own encryption key. It is often needed 
(e.g., for healthcare research, or to correlate or link data stored in different organizations). 
Such an operation could be done by using homomorphic encryption, but it requires all 
organizations to use the same encryption key. In addition, its computation is very costly.

7.4.2 How?
Relational encryption [MR15] technology enables the matching of IDs, attribute values, 
etc., among data encrypted with different keys. Thus, each data owner can use different 
keys to protect sensitive information. Moreover, the entity performing such mapping 
or linking operations—for instance a cloud service provider—cannot decrypt the data. 
Therefore, confidentiality is preserved.

7.5 Reconcile authentication and anonymity

7.5.1 Why?

To balance security and privacy. Often the requirements of authentication and 
anonymity are antithetic to each other. However, it is sometimes possible to achieve 
a middle ground where authentication can be guaranteed despite preserving some 
degree of anonymity. For cryptographic protocol ensuring the integrity of data coming 
from an identified source, the core requirement is that the adversary should not be able 
to forge data that did not come from the purported source. However, there can also be 
some degree of anonymity in the sense that the source is only identifiable as being part 
of a group. In addition, in certain situations (depending upon regulations that may be in 
place), a trusted third party should be able to link the data to the exact source.

7.5.2 How?

A group signature is a cryptographic scheme that enables individual entities to sign their 
data but remain identifiable only in a group to the public. Only a trusted third party can 
pinpoint the identity of the individual. The scheme was first proposed by Chaum and Heyst 
[Cv91], with practical instantiations developed by Boneh, Boyen and Shacham [BBS04].

Ring signatures, first formalized by Rivest, Shamir and Tauman [RST01], are group signature 
schemes which have only users and no managers. Group signatures are useful when the 
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members want to cooperate, while ring signatures are useful when the members do not 
want to cooperate. Both group signatures and ring signatures are signer-ambiguous, but 
in a ring signature scheme there are no pre-arranged groups of users; no procedures for 
setting, changing, or deleting groups; no way to distribute specialized keys; and no way to 
revoke the anonymity of the actual signer. The only assumption is that each member is 
already associated with the public key of some standard signature scheme. To produce a 
ring signature, the actual signer declares an arbitrary set of possible signers that includes 
himself, and computes the signature entirely by himself using only his secret key and the 
others public keys.

7.6 Implement identity-based encryption

7.6.1 Why?

To overcome difficulties associated with key management of a public-key crypto 
system. One of the major difficulties when practically deploying a system that relies on 
public-key cryptography is the management of keys, including provisioning, updates, 
and revocation. For instance, all communicating nodes must be equipped with 
digital certificates issued by trusted certification authorities. Moreover, sufficient key 
management is not feasible in a setting like the Internet of hings (IoT), where a large 
number of resource-constrained devices are involved.

7.6.2 How?

In identity-based systems [Sha85] (IBE), plaintext can be encrypted for a given identity 
and the expectation is that only an entity with that identity can decrypt the ciphertext. 
Any other entity will be unable to decipher the plaintext, even with collusion. Boneh 
and Franklin [BF01] came up with the first IBE using pairing-friendly elliptic curves. 
Since then, there have been numerous efficiency and security improvements [Wat09, 
CW13, JR13].

7.7 Utilize attribute-based encryption and 
access control

7.7.1 Why?

To integrate access control and encryption in a practical manner. Traditionally, access 
control to data has been enforced by systems—including operating systems and virtual 
machines—which restrict access to data, based on some access policy. The data is still 
in plaintext. There are at least two problems to the systems’ paradigm: (1) systems can 
be hacked; and (2) security of the same data in transit is a separate concern.

7.0 Cryptographic Technologies for Big Data (cont.)
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7.7.2 How?

Attribute-based encryption (ABE) extends this concept to attribute-based access control. 
In [SW05], Sahai and Waters presented the first ABE, in which a user’s credentials are 
represented by a set of string called ‘attributes’ and the access control predicate is 
represented by a formula over these attributes. Subsequent work [GPSW06] expanded 
the expressiveness of the predicates and proposed two complementary forms of 
ABE. In key-policy ABE, attributes are used to annotate the ciphertexts and formulas 
over these attributes are ascribed to users’ secret keys. In ciphertext-policy ABE, the 
attributes describe the user’s credentials and the formulas over these credentials are 
attached to the ciphertext by the encrypting party. The first work to explicitly address 
the problem of ciphertext-policy attribute-based encryption was by Bethencourt, Sahai, 
and Waters [BSW07], with subsequent improvements by Waters [Wat11].

7.8 Use oblivious RAM for privacy preservation

7.8.1 Why?

To prevent information leakage that may occur through access pattern analysis 
implemented by cloud providers. When data is stored in a cloud, the access pattern 
to the data—which is visible to cloud service providers—may leak sensitive, private 
information even if the data is appropriately encrypted.

7.8.2 How?

Oblivious RAM [SSS11] shuffles memory locations after each access. Thus, even a cloud service 
provider cannot tell which data is accessed; therefore, the access pattern can be effectively hidden.

7.9 Incorporate privacy-preserving public auditing

7.9.1 Why?

To enable public auditing without causing privacy concerns. It is a trend to outsource 
verification procedures to a third-party auditor (TPA), and the verification protocol is 
expected to be publicly verifiable. Such an operation should not compromise privacy.

7.0 Cryptographic Technologies for Big Data (cont.)

7.9.2 How?

A privacy-preserving, public auditing scheme was proposed for cloud storage in 
[WWRL10]. Based on a homomorphic linear authenticator integrated with random 
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7.10.1 Why?

To improve efficiency of storage usage. Data stored on a cloud is typically encrypted. 
However, using common encryption scheme, even the same file results in different 
ciphertext. Since the cloud service provider cannot tell whether they are actually the 
identical data or not, there may be a situation where duplicated copies of the same data 
may unnecessarily remain on the cloud. 

7.10.2 How?

If deduplication is desired, convergent encryption scheme—which was originally 
proposed in [SGLM08]—can be considered. It uses an encryption key that is 
deterministically derived from the plaintext data to be encrypted (i.e. cryptographic hash 
value of the data, and thereby the resulting ciphertext becomes identical). This way, 
deduplication of the identical data is made possible. 

7.10 Consider convergent encryption for deduplication

masking, the proposed scheme is able to preserve data privacy when a TPA audits the 
data set stored in the servers at different tiers.

7.0 Cryptographic Technologies for Big Data (cont.)
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Granular Access Control8.0

There are two sides to any access control solution. The first is restricting data and 
operations from users who should not have access, and the second is granting access 
to users who should have access. Picking the right access control strategy can have 
a profound impact on how effectively users can leverage a database. To satisfy policy 
restrictions, coarse-grained access mechanisms often must restrict data that could 
otherwise be shared. Granular access control mechanisms are a tool that can be used to 
reduce data restriction without violating policies. The following best practices should be 
followed while ensuring granular access control.

8.1 Choose appropriate level of granularity required

8.1.1 Why?

To balance complexity and granularity of access control. The use of fine-grained access 
controls requires an increased complexity in data labeling and security attribute 
management, while coarse-grained access controls demand data modeling. For 
example, database views can be used to protect databases that do not support row-, 
column-, or cell-level access controls, but users must then maintain the views.

7.8.2 How?

8.1.2 How?

Oblivious RAM [SSS11] shuffles memory locations after each access. Thus, even a cloud service 
provider cannot tell which data is accessed; therefore, the access pattern can be effectively hidden.

8.2 Normalize mutable elements, denormalize 
immutable elements

8.2.1 Why?

To design suitable access control mechanisms. Recent advances in database 
technology have opened the door to more forms of denormalized data modeling. For 
data elements that are more immutable, denormalized models can provide higher 
concurrency and lower latency than models that require more joins. Granular access 
controls become even more important when using denormalized data models, since 
data from many sources and of many types are thrown together in a single bucket.
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7.8.2 How?
8.2.2 How?

The core of fine-grained access control is to maintain labels with data. When denormalizing 
data, maintain provenance information for any provenance elements that are referenced in 
the data access policy. For example, if the source of data affects who can see that data, then 
maintain source information in tags along with fields that came from that source.

8.3 Track secrecy requirements

8.3.1 Why?

To implement a scalable access control system. Part of building a scalable granular 
access control mechanism is to pre-join secrecy policy with data in the form of labels. 
Secrecy requirements can change over time, and it is important to be able to adapt 
granular access control mechanisms to keep up with changing policies.

8.3.2 How?

Use a labeling scheme that labels data with elements of policy that are unlikely to 
change over time, while more mutable policy elements are checked at query time. 
Keep track of the data-labeling policies that are applied at data ingest time to reduce 
assumptions made in policy evaluation at query time.

8.4 Maintain access labels

8.4.1 Why?

To make policy decisions on data with complex provenance. Accurately maintaining 
access labels includes an amount of provenance tracking.

8.4.2 How?

Label data as far upstream as possible. Keep track of labels that are referenced in data 
access policy through all data transformations. Use access control mechanisms that 
support Boolean logic and/or label sets to simplify label tracking through data aggregation.

8.0 Granular Access Control (cont.)
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8.5 Track admin data

8.5.1 Why?

To re-key the system when necessary. User roles and authorities change frequently and 
should not be assumed to be static. Changing this information is also tantamount to re-
keying the system, so a proper data-basing strategy is necessary.

8.5.2 How?

Use a database with access control and auditing capabilities to keep track of admin 
data. Be sure to secure the connection between the admin data and big data 
architecture when using it as a policy information point.

8.6.1 Why?

To reduce the administrative burden of supporting a large user base. A big benefit of 
granular access control mechanisms is to broaden data sharing without incurring a 
large administrative cost. Single sign-on (SSO) solutions offload management of user 
authentication to enterprise-wide or even publicly available systems. 

8.6.2 How?

Defer authentication to advanced SSO systems such as Lightweight Directory Access 
Protocol (LDAP), Active Directory, OAuth, or OpenId.

8.6 Use standard single sign-on (SSO) mechanisms

8.7 Employ proper federation of authorization space

8.7.1 Why?

To allow data providers to maintain control of access to their data when data analysis spans 
over multiple providers. The concept of big data is made more powerful by including analysis 
across many diverse data sets. However, data protection policies are complicated through the 
inheritance of policies from multiple data providers. Federating the authorization space supports 
a more modular approach to policy management through more precise tracking of data labels.

8.0 Granular Access Control (cont.)
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8.7.2 How?

Use a labeling scheme that disambiguates between labels managed by different 
authorities. Leverage user attributes that are coupled with advanced SSO systems, such 
as LDAP, Active Directory, OAuth, and OpenId.

8.8 Incorporate proper implementation of 
secrecy requirements

8.8.1 Why?

To ensure secrecy requirements. Ensuring that the requirements are properly 
implemented requires constructing arguments about data identity, user identity, user 
purpose, and many additional environmental considerations. In a granular access 
control system, these elements can be disbursed throughout the architecture for 
performance reasons, but proper use of the tools available can lead to straightforward 
arguments for the preservation of secrecy.

8.8.2 How?

Deconstruct secrecy requirements into parts that are data specific, user specific, and 
application specific. Use a consistent labeling strategy to ensure that all of the necessary 
fine-grained information about the data is found in the labels. Use an authoritative source 
for user attributes. Infer that any purpose- or application-specific restrictions are either 
provided by the application and audited or inferred by application-specific authentication.

8.9 Implement logical filter in application space 

8.9.1 Why?

To prevent data abuse and leakage by application. With granular access control 
mechanisms, applications have the ability to access data for many different purposes on 
behalf of a user. Any policies that prevent cross-purpose data combinations rely in some 
part on the application properly separating different uses of data. For example, a single 
health care provider may access data for the purpose of diagnosing a specific patient 
or for the purpose of characterizing a population of patients. If an application is reused 
for both purposes, then the application is responsible for avoiding leakage of personally 
identifiable information and personal health information from the first to the second use.

8.0 Granular Access Control (cont.)

46CLOUD SECURITY ALLIANCE Big Data Working Group Guidance
© Copyright 2016, Cloud Security Alliance. All rights reserved.



8.9.2 How?

Ensure that the application does not “change hats” without clearing session data. Defer 
to the database’s granular access control mechanism where possible.

8.10 Develop protocols for tracking access restrictions

8.10.1 Why?

To operate access control system as expected. Data privacy policies are often complex and 
difficult to implement with 100 accuracy. It is important to review what policies are in place on 
a given system, as well as maintaining the capacity to revise policies when deemed necessary.

8.10.2 How?

Protocols for tracking access restrictions come in two forms: those used to encode 
policies and those used to audit the instantiations of those policies. Logging and 
aggregating audits of policy decisions can provide critical information about what 
data users are accessing, what data users are trying to access (unsuccessfully) and 
how users are attempting to access the system in an unauthorized manner. Analysis 
of those audits is critical to refining policy for both the purposes of increased privacy 
and increased sharing. When encoding policies, choose a standard language such as 
eXtensible Access Control Markup Language (XACML). This will allow policy creators to 
bring in help from a community of tool builders for visualizing, editing, and reasoning 
during the encoding process.

8.0 Granular Access Control (cont.)
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Granular Audits9.0

It is a best practice to perform granular audits. This is primarily due to the possibility 
that users may miss true positive alerts from a real-time security monitoring system that 
may warn them of an attack. The following best practices should be followed in regard to 
establishing a system for granular audits.

9.1 Create a cohesive audit view of an attack

9.1.1 Why?

To answer essential questions following an attack. As an attack may consist of different 
stages (e.g., a reconnaissance scan, followed by a vulnerability attack, etc.), it is important 
to get all the pieces of the puzzle collected and put into their respective places. In only 
this way can a cohesive view be established. It is important to build up a consistent and 
cohesive audit trail that answers basic questions, including: what happened? when did it 
happen? how did it happen? who was the perpetrator? and why did it happen? 

9.1.2 How?

• Enable auditing capabilities in a big data infrastructure.
• Select the relevant capabilities depending on features of infrastructure components, such 
as log information from routers, applications, operating systems (OS), databases, and so on.
• Use a SIEM solution, as well as audit and forensics tools to process the collected audit 
information. 

9.2 Evaluate completeness of information

9.2.1 Why?

To provide a full audit trail. All relevant information that builds up the trail has to be 
available. As such, completeness of information is key.

9.2.2 How?

• Evaluate which audit information might be relevant upfront and which audit information 
is available in general. This data may come from log files, OS settings and profiles, and 
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database configurations, for example.
• Setup and enable the necessary audit settings of the big data infrastructure, like routers, 
OS, Hadoop, and applications for which the audit information must be collected upfront. 
Setup the settings for other audit information, which might be collected in a later stage.
• Collect and process the audit data with a SIEM solution or auditing tool, when 
applicable. 

9.3 Ensure timely access to audit information

9.3.1 Why?

To accelerate incident response. Time is the most important aspect in case of an attack, not only 
to determine when the attack happened, but also to have timely access to audit information in 
case it is needed. This goes hand-in-hand with the best practice mentioned in section 9.2. 

9.3.2 How?

As described in best practice 9.2, setting up audit information upfront is key, not only 
for the completeness of the information, but also to get access to the information in a 
timely fashion. 

9.4 Maintain integrity of information

9.4.1 Why?

To ensure trust in audit data. Without an integrity guarantee, there is no single version 
of the truth. Audit information can’t be trusted and, as such, becomes useless. 

9.4.2 How?

• Consider implementing integrity controls, like secure hashing. Use SHA-1, SHA-224, 
SHA-256, and/or SHA-512.
• Ensure the integrity of the audit information is guaranteed along the complete 
path of collection, processing, use and storage of the data. This helps to ensure the 
information’s chain of custody.

9.0 Granular Audits (cont.)
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9.5 Safeguard confidentiality of information

9.5.1 Why?

To prevent audit data from reaching the wrong hands. While ensuring the integrity of 
the audit emphasizes the accuracy of the information, confidentiality addresses the fact 
that not everyone needs to have access to that data. This is important because audit 
information contains data related to potential attackers and methods. As such, only 
authorized people (typically auditors and forensic researchers) should be awarded access. 

9.5.2 How?

• Ensure that audit information is stored separately (see best practice 9.9).
• Ensure that audit information can only be accessed by authorized people (see best practice 
9.6).
• Consider the use of encryption to encrypt the audit information, where feasible and applicable. 

9.6 Implement access control and monitoring for 
audit information

9.6.1 Why?
To safeguard audit information. Audit information contains important data regarding 
the “what, when and who” of system access and data use. As this information is critical 
for investigations, access to this information has to be strictly controlled. Limited access 
also helps to avoid tampering with audit information, which may allow the attacker to 
erase his/her tracks.

9.6.2 How?

• When setting up the identity and access management process, carefully determine 
who has access to audit information and consider creating a designated “auditor” 
position.
• Monitor the use of this role on a regular basis, especially for exceptions or access 
attempts.
• Ensure that a cohesive view of the attack is created from audit information. 

9.0 Granular Audits (cont.)
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9.7 Enable all required logging

9.8 Use tools for data collection and processing

9.7.1 Why?

9.8.1 Why?

To build up an audit view. This process is only as effective as the data collected. Most of 
this information comes from log files (e.g., networks, OS, database, and applications). As 
such, enabling logging according to what needs to be audited is key. 

To find actionable information without being overwhelmed by big data. There is simply 
too much information (especially now with big data) to be processed manually. Tools—
such as a SIEM tool—are necessary to collect and process the data. 

9.7.2 How?

This is related to best practice 9.2, which describes which information is needed. Based 
on this data, evaluate the logging capabilities of the big data infrastructure components 
and enable the different logging features. 

9.8.2 How?
Use available tools such as a SIEM tool to process the information gathered from logs.

9.9 Separate big data and audit data

9.9.1 Why?

To enforce separation of duties. As the audit data contains information about what has happened 
in the big data infrastructure, it is recommended to separate this data from the “regular” big data.

9.9.2 How?

• Implement the audit system in a different infrastructure than the big data infrastructure. 
For example, this may include a different network segment or cloud.
• Ensure that only the pre-defined “auditor” has access to the audit system and audit data.
• Monitor the audit system. 

9.0 Granular Audits (cont.)
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9.10 Create audit layer/orchestrator

9.10.1 Why?

To facilitate audit data analysis. As a big data infrastructure contains different 
components, each component has its own set of logging capabilities and log format. It 
is very hard, if not impossible, for an audit team to learn all the different intricacies of 
these logging features and formats. 

9.10.2 How?

An audit layer can act as a middleware layer, which abstracts the underlying technical 
details for the auditor. The auditor communicates with the layer using an interface, 
which allows him/her to search. The audit layer will take care of the technical intricacies 
to collect the correct log files, normalize those when needed and provide information 
back to the auditor in terms which are understandable by the auditor. As this is 
complex, don’t try to build this yourself, but evaluate third-party/open-source solutions. 
One example is ElasticSearch. Some SIEM/log management vendors also provide 
solutions in this regard (e.g., Splunk, Sumologic, Loggly). 

9.0 Granular Audits (cont.)
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Data Provenance10.0

With an increase in provenance metadata from large provenance graphs in big data 
applications, security is of great importance. With this in mind, the following suggestions are the 
best practices for data provenance security.

10.1 Develop infrastructure authentication protocol

10.2 Ensure accurate, periodic status updates

10.1.1 Why?

10.2.1 Why?

To prevent malicious parties from accessing data. Without infrastructure authentication, 
an entire group of users (including unauthorized individuals) can have access to data—
including some parties who may misuse the provenance data. For example, an adversary 
is likely to release the provenance information or data itself—which likely includes some 
sensitive information—to the public. 

To collect data correctly. Advances in wireless technology have increased the number 
of mobile devices that are now used to collect, transmit and store data. However, there 
may be some malicious nodes and lazy nodes in the wireless environment. The malicious 
nodes are active attack nodes. When a malicious node receives data transmitted from a 
data owner, it actively tampers with the information, eavesdrops the content, or drops 

10.1.2 How?

An authentication protocol is designed as a sequence of message exchanges between 
principals allowing the use of secrets to be recognized. Design consideration is 
needed in, for instance, whether the protocol features a trusted third party and 
what cryptographic schemes and key management schemes are appropriate. If the 
number of nodes needed to authorize is extensive, the public key infrastructure can 
be used to authorize each worker and a symmetric key can be sent to each of those 
individuals. The authorized nodes can use the symmetric key to communicate because 
the overhead of the symmetric key is much smaller than the public key method. The 
unauthorized users cannot transmit the information due to the absence of a symmetric 
key. In this way, users can build efficient authentication infrastructure to authorize all 
valid parties.
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the data package while sending fake data to the next relay node. Lazy nodes, on the other 
hand, simply choose not to store-and-forward the data due to the energy consumption 
required for data transmission. These manipulations of collection and transmission of 
information can be stored as part of a provenance record. The status of provenance 
records should be periodically updated. 

10.2.2 How?

Trust and reputation systems can be introduced into the wireless network to address 
lazy and malicious node issues. Reputation systems provide mechanisms to produce a 
metric encapsulating reputation for each identity involved in the system. For example, if 
the node performs a malicious act or eavesdrops for sensitive information, the system 
can assign some pre-defined negative value to the node as a rating. Also, the system can 
assign pre-defined positive value to nodes with normal behavior, while lazy behaviors are 
simply assigned “zero” as a rating value. One node can also give a trust value to another 
node based on their interactions. This trust information can be stored as part of the 
provenance record, which can be periodically updated in order to reflect its most recent 
status. Some pre-defined threshold should be designated by the system to identify that 
nodes are valid. If the trust value of the node is lower than that pre-defined threshold, the 
node is then recognized as invalid and is not used to transmit or collect information. 

10.3 Verify data integrity

10.3.1 Why?

To ensure trust in data. In real-world environments, provenance data is typically stored 
on a personal laptop or in a remote database center. In turn, there may be some 
unevaluated risks associated with losing portions of the provenance data by accident, such 
as unforeseen damage to the hard drive. In attacker-active environments, there may also 
be adversaries who modify segments of original data files in the database. To that end, it is 
essential to detect whether user data has been tampered with. The establishment of data 
integrity is one of the most important markers of provenance security.

10.3.2 How?

Checksums are considered one of the least expensive methods of error detection. 
Since checksums are essentially a form of compaction, error masking can occur. Error 
detection in serial transmission by arithmetic checksum is an alternative to cyclic 
redundancy checks (CRC). Reed-Solomon (RS) codes are a special class of linear, non-
binary block codes with the ability to correct both errors and erasure packets. An RS 
code achieves ideal error protection against packet loss since it is a maximum distance 
separable (MDS) code. Another efficient way to maintain the integrities of both data and 
provenance information is the use of digital signatures, which keeps data from being 
forged by adversaries. Digital signatures are the most common application of public 
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key cryptography. A valid digital signature indicates that data was created by a claimed 
sender and the information was not altered during transmission. This method provides 
a cryptographic way to secure the data and its provenance integrity; furthermore, the 
verification cost is reasonable even when the volume of data becomes extensive. New, 
efficient digital signature schemes will likely be developed to ensure the integrity of 
information in big data scenarios. 

10.4 Ensure consistency between provenance and data

10.4.1 Why?

To ensure provenance information is trustworthy. Separating provenance from its data 
introduces problems and potential inconsistencies. Provenance should be maintained 
by the storage system. If the provenance does not exactly match with the corresponding 
data, users cannot use the provenance data confidently. Effective use of provenance will 
establish a record of process history for data objects. Historical information about the 
data can be constructed in the form of a chain, which is also referred to as a provenance 
chain. The provenance chain of a document is a non-empty and time-ordered sequence of 
provenance records. For provenance data stored in the database, the provenance chain 
should be well-organized to make provenance records consistent. Otherwise, provenance 
information cannot be trusted if consistent record keeping cannot be established. 

10.4.2 How?

In order to guarantee the consistency between the provenance and its data, the hash function 
and hash table can be used to address this challenge. Hash map keys can be utilized to locate 
data. It is not advised to utilize the provenance data directly because the information is likely 
enormous in size and the structure of the data is complicated. Before the provenance data is 
stored in the database, the hash function can be used to generate the hash value of the selected 
data block. Users can then apply the provenance information and the hashed provenance data 
to build the hash table. As a basic component of the provenance chain, a provenance record 
will denote a sequence of one or more actions performed on the original data. In order to 
achieve the consistency of the provenance record, the cryptographic hash of both the newly 
modified provenance record and history chain of the provenance record are taken as input. The 
consistency of the provenance chain can be verified by checking, at the beginning of each editing 
session, whether the current provenance chain matches the provided hash value. As massive 
provenance data is generated in big data applications, users need highly efficient methods to 
keep the consistency between the provenance, its data, and the provenance chain itself. 

10.0 Data Provenance (cont.)
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10.5 Implement effective encryption methods

10.6 Use access control

10.5.1 Why?

10.6.1 Why?

To maintain security of provenance data. As cloud computing techniques continue to 
evolve, users often outsource large amounts of scientific provenance data to the cloud for 
storage/computation. When the data provider transmits the provenance data to the cloud 
servers in the way that the data is expressed in plaintext form, the transmitted data flow 
can be easily eavesdropped by an adversary. Additionally, the cloud server will always be 
considered a third-party server which cannot be fully trusted. 

To prevent abuse and unauthorized disclosure of provenance records and data by 
malicious parties. One advantage of cloud computing is that the cloud provider has the 
power to share the data across different user environments. However, only authorized 
users should have access to shared data. The volume of stored provenance data is 
normally extensive in the cloud server, so under most circumstances the user (data 
owner) may wish to restrict information accessibility. On the other hand, the provenance 
record may also contain some private information, such as a user’s personal profile and/or 
browsing log. The adversary may offensively access and misuse the provenance record or 
data itself without appropriate access control being applied. Moreover, the adversary may 
publically disclose sensitive data, which could damage the interests of the data owner. 

10.5.2 How?

One existing method to keep data secure during transmission is to transform the 
original data into ciphertext form. Before the provenance data is sent to the untrusted 
server, the data owner encrypts the information by using the secret key. Anyone who 
is untrusted by the transmitter cannot have the secret key and, therefore, cannot 
decrypt the ciphertext to get the original data. Only the authorized party can decrypt 
the ciphertext by using the secret key. Users can also utilize encryption to secure 
outsourcing of computation tasks on untrusted servers. Before users send out the 
high-burden computation task to the cloud server, the data owner can first “blind” the 
original information by using lightweight encryption technology. At that junction, the 
data owner can outsource the encrypted information to the cloud server to handle the 
high-burden computation task. Because the cloud server does not have the secret key, 
this server cannot disclose the original provenance data. When the computation task 
is finished, the data owner can use the secret key to recover the data handled by the 
cloud server. By using encryption, the data owner can outsource the computational task 
and enable confidential storage of the task and data in the untrusted server. 

10.0 Data Provenance (cont.)
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10.6.2 How?

Appropriate access control helps avoid illegal access and private data leakage by 
limiting the pool of actions or operations that a legitimate system user may perform. 
One popular access control technique is role-based access control (RBAC). In this 
scenario, provenance data owners store data in an encrypted form and grant access 
to the information solely for users with specific roles. Only authorized users have data 
access according to the RBAC method. Attribute-based encryption (ABE) techniques can 
be implemented in order to achieve fine-grained access control. Ultimately, however, 
a ciphertext-policy attribute-based encryption (CP-ABE) scheme is the most advisable 
method for cloud-computing environments. In this scheme, different users in the 
system have their corresponding attribute sets created according to their inherent 
properties. Authorized users are assigned private keys which are associated with 
different attribute sets. The data owner encrypts the provenance data with access 
structure and assigns encrypted data to those who possess privileges. 

10.7 Satisfy data independent persistence 

10.7.1 Why?

To preserve indistinguishability of provenance data. When updates occur between two 
adjacent pieces of the provenance data, the user cannot distinguish among these pieces. 
This is referred to as “independence.” For example, the provenances of two segments 
of derived data, such as simulation results, won’t reveal differences between the data. 
Sometimes, a user is granted partial privileges to access pieces of provenance data. If data 
has not met the standards for the “independence” designation, the user is able to distinguish 
the difference between two pieces of provenance data. Some segments of the provenance 
data may involve sensitive information, which the data owner does not want the data 
consumer to access. “Independence” designation for different provenance records should 
also be achieved because some users are only able to access part of the provenance chain. 

10.7.2 How?

Symmetric keys and distributed hash tables (DHTs) technology can be used to establish 
and maintain independence among different pieces of provenance data. The symmetric 
keys are selected randomly and independently to encrypt different pieces of the 
provenance data. Due to differences among independent symmetric keys, encrypted 
pieces of provenance data are also independent. Moreover, different pieces of the 
same provenance data should not be stored successively because they have the same 
patterns. In order to distribute the different pieces of provenance data, users can utilize 
the distributed hash tables (DHTs). Segments of provenance data can be retained, in 
a distributed fashion, with DHTs. Moreover, the hash function can be recalled to help 
different provenance records achieve independence. The individual provenance record 
should be hashed, and then different hashed provenance records can be reconstructed 
as a chain. The modified individual provenance record only affects the corresponding 

10.0 Data Provenance (cont.)
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hashed component and will not impact other components in the hash chain. That is to 
say, different parts of provenance records can achieve independent persistence.

10.0 Data Provenance (cont.)

10.8 Utilize dynamic fine-grained access control

10.9 Implement scalable fine-grained access control

10.8.1 Why?

10.9.1 Why?

To allow only authorized users to obtain certain data. Fine-grained data access control 
provides users (data consumers) with access privileges that are determined by attributes. 
In most real-world cases, user-assigned privileges and/or attributes vary with time and 
location, which may need to be incorporated in access control decision. 

10.8.2 How?

Using attribute-based encryption, fine-grained access control can be applied to 
encrypted provenance data. In order to reach the dynamic property, users can 
introduce the dynamic attribute and weighted attribute into the attribute-based 
encryption. The dynamic attribute can be described as a frequently changing attribute, 
such as a location coordinate, while other attributes are considered weighted attributes. 
These attributes have different weights according to their importance, which are defined 
in the access control system. Every user in the system possesses a set of weighted 
attributes, and the data owner encrypts information for all users who have a certain 
set of attributes. However, a user’s private key has a specific kind of weighted access 
structure. In order to decrypt a message, a ciphertext with a set of weighted attributes 
must satisfy the weighted access structure. The weight of the attribute can be increased 
or decreased to reflect the dynamic property.

To protect large-scale provenance data. A considerable amount of provenance data is 
stored and exchanged in databases. Database systems allow data consumers access to 
various types of provenance data in accordance to access policies designed by the data 
owner. However, an access policy should be scalable in order to meet the ever-growing 
volume of provenance data and user activity within a group. If the access policy is not 
scalable, any future policy modifications that may be necessary will be difficult to implement. 
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10.9.2 How?

Attribute-based encryption can be utilized to achieve fine-grained access control, which was 
introduced in the previous section. To achieve scalability, data owners can introduce a semi-trusted 
proxy that exploits the “so-called” proxy re-encryption technology. This will allow the proxy to 
decrypt the message and re-encrypt it with the new access structure. Since the proxy is “honest-
but-curious”—which indicates it will try to gather as much private information as possible based 
on possession—users cannot allow the proxy to fully decrypt the message. Ideally, users would 
control the policy while the proxy is utilized to produce a partial ciphertext for the policy specified 
by that purpose. When access structure attributes in the ciphertext need to be modified by the 
data owner, the newly specified policy is given to the proxy. Initially, the proxy uses the previous 
partial attribute set to decrypt the partial ciphertext, and then applies the newly specified policy to 
encrypt the partially decrypted ciphertext. Because the proxy does not have the full attribute set, 
the proxy can only partially decrypt the message and not the entirety of the provenance data. 

10.0 Data Provenance (cont.)

10.10 Establish flexible revocation mechanisms

10.10.1 Why?

To prevent access by unauthorized entities. With such high volumes of provenance data stored in 
databases, maintaining effective access control is a constant challenge for data managers. Access to 
the data can be easily abused (even if the privilege of accessing the data is expired) when the access 
permission is not appropriately updated. (For instance, a fired employee could still abuse access 
privilege if access is not revoked in timely manner.) In some cases, data may only be valid during a 
particular time interval. Data managers also need an efficient data revocation scheme after the data 
has expired. 

10.10.2 How?

One existing method to keep data secure during transmission is to transform the original data into 
ciphertext form. Before the provenance data is sent to the untrusted server, the data owner encrypts 
the information by using the secret key. Anyone who is untrusted by the transmitter cannot have the 
secret key and, therefore, cannot decrypt the ciphertext to get the original data. Only the authorized 
party can decrypt the ciphertext by using the secret key. Users can also utilize encryption to secure 
outsourcing of computation tasks on untrusted servers. Before users send out the high-burden 
computation task to the cloud server, the data owner can first “blind” the original information by using 
lightweight encryption technology. At that junction, the data owner can outsource the encrypted 
information to the cloud server to handle the high-burden computation task. Because the cloud 
server does not have the secret key, this server cannot disclose the original provenance data. When 
the computation task is finished, the data owner can use the secret key to recover the data handled 
by the cloud server. By using encryption, the data owner can outsource the computational task and 
enable confidential storage of the task and data in the untrusted server. 
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