
COMMUNICATION

Beyond the Black Box
Jeroen Demeyer, William Stein, and Ursula Whitcher

“Commercial computer algebra systems are black boxes,
and their algorithms are opaque to the users,” complained
a trio ofmathematicianswhose “misfortunes” are detailed
in a recent Notices article [2]. “We reported the bug on
October 7, 2013…By June 2014, nothing had changed
…All we could do was wait.”

In open-source software the code underlying each
operation is available to anyone who chooses to look at
it. Because open-source code can be checked directly, it

the code
underlying each

operation is
available to

anyone

is highly valuable
for replicable, peer-
reviewable research.
We are users and de-
velopers of SageMath,
open-source software
by and for the math-
ematical community
(see [3]). SageMath is
a full computer alge-
bra system that can be
installed locally or ac-

cessed freely inawebbrowser through theSageMathCloud.
Sage also provides a consistent interface to many free
libraries of mathematical software.

Open source is not a panacea: errors can arise in open-
source software as well as in closed-source software.
We trace the history of a representative bug in Sage
to illustrate the role the mathematical community plays
in detecting and fixing bugs in open-source software.
The unfortunate trio [2] found a bug in Mathematica’s
algorithm for determinants of large integer matrices.
SageMath evaluates that determinant correctly. For the

Jeroen Demeyer is postdoctoral assistant at the University of
Ghent (Belgium) and research engineer for the European project
OpenDreamKit at the University Paris-Sud (France). His email ad-
dress is jdemeyer@cage.ugent.be.

William Stein is professor of mathematics at the University of
Washington. His email address is wstein@uw.edu.

Ursula Whitcher is associate editor for Math Reviews and as-
sociate professor at the University of Wisconsin–Eau Claire. Her
email address is whitchua@uwec.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1408

sake of comparison, we describe a different past problem
with Sage’s computation of determinants and the process
followed in resolving it.

The first step in fixing a bug is that somebody must
notice a problem. In our case, SageMath release 5.6 stalled
when computing the determinant of a large integermatrix;
the computation never completed.

Next, the person who notices the bug must report it.
Typically, a userwouldpost a question to the sage-support
or sage-devel Google group. Asking questions simultane-
ously warns active SageMath users about the problem
and advertises for developers who might fix it. Bugs
can also be reported by emailing bugs@sagemath.com. A
very confident user might move straight to the next step,
creating a ticket.

Proposed changes to the SageMath code are tracked
on the SageMath trac server. Individual bugs or code
enhancements are called tickets. In January 2013 our
determinant bug became ticket 14032, with the initial
title determinant() of large integer matrices broken (see
[4]). The person who creates a ticket chooses a priority
for the fix from the options of “trivial”, “minor”, “major”,
“critical”, and “blocker”. Most SageMath tickets are given
the middle ranking of “major”; our determinant bug was
“critical”. A new version of SageMath cannot be released
if there are open tickets marked “blocker”.

Once the ticket is created, developers can start hunting
down the bug’s origins. In our case, the first clue was that
stalling arose when computing determinants of integer
matrices of size greater than 50 × 50. This was the
threshold where SageMath 5.6 invoked a 𝑝-adic algorithm
to calculate determinants of integer matrices. SageMath
includes several different implementations of algorithms
to compute integer determinants. The default algorithm
depends on the input but can be explicitly overridden.
Choosing a different algorithm made the computation
work, so it was clear that the problem was with the 𝑝-adic
algorithm.

How is the𝑝-adic algorithmsupposed towork?Suppose
we are given an 𝑛×𝑛 integer matrix 𝐴. Checking whether
the determinant of 𝐴 is 0 is relatively quick, so let us
assume that det(𝐴) ≠ 0. The first step is to choose a
random integer vector 𝑣 and a prime number 𝑝. We may
find a rational vector 𝑥 that solves the matrix equation
𝐴𝑥 = 𝑣 using 𝑝-adic approximation. That is, we solve

2 Notices of the AMS Volume 63, Number 8

𝐴 ̄𝑥 = 𝑏 (mod 𝑝𝑚) for some 𝑚; if we take 𝑚 to be
sufficiently large, we may recover 𝑥 from ̄𝑥. Now, one can
prove, usingCramer’s rule, that the least commonmultiple
of the denominators of the entries of 𝑥 will be a divisor 𝑑
of det(𝐴). With high probability, det(𝐴)/𝑑will be not only
an integer but a tiny integer. We can reconstruct det(𝐴)
completely by finding its value modulo a few different
prime numbers using the row-echelon form of 𝐴 in fields
of prime order and then applying the Chinese Remainder
Theorem. The Hadamard bound on the determinant of a
matrix, which compares the determinant to the product
of the Euclidean norms of its columns, bounds the size of
the prime numbers we need to check; this guarantees that
we can complete the reconstruction in a finite amount of
time.

Further testing of the 𝑝-adic determinant algorithm in
SageMath showed that it worked for very large integer
matrices as well as for small ones. One of us, Jeroen
Demeyer, a postdoc at Ghent University, discovered that
in fact the computation stalled only for 51 ≤ 𝑛 ≤ 63. He
changed the title of the ticket to determinant() of integer
matrices of size in [51,63] brokenandbegan trying tofigure
out why SageMath treated these matrices differently. The
problem, he discovered, lay in the implementation of the
last part of the 𝑝-adic algorithm, where SageMath tried
to find det(𝐴) “modulo a few prime numbers.” When
a prime 𝑝 is large, SageMath computed determinants
(mod 𝑝) using the code for determinants over ℤ. A recent
tweak to another part of Sage’s matrix code had changed
the definition of “large 𝑝” to be 𝑝 > 223 (that is, prime
numbers greater than 8388593). When 𝑛 ≤ 63, Sage’s
integer matrix determinant function called code that
asked for det(𝐴) modulo primes greater than 8388593.
Thisproducedan infinite loop: computing thedeterminant
of an integer matrix called for the determinant (mod 𝑝),
which called for the determinant of an integer matrix.

Once he found the bug’s origin, Demeyer quickly
wrote a patch to fix it. The next step is peer review:
before someone’s code is incorporated into Sage, another
developer must test it and sign off. Review often entails
multiple rounds of suggestions and fixes, but in this
case Demeyer’s fix worked well the first time, and the
mathematical physicist Volker Braun (then a postdoc at
the Dublin Institute for Advanced Studies) approved it for
inclusion in Sage just two days after the bug was reported.
Less than a month later, SageMath 5.7, which included
the fix for this bug, was released.

Part of Demeyer’s patch was a test to ensure similar
problems would not arise in the future. Each new release
of SageMath goes through a series of tests to ensure that
it works as advertised. Demeyer’s patch requires new ver-
sions of the SageMath code to compute the determinants
of random integermatrices up to 80×80 successfully. Fur-
thermore, SageMath now checks that det(𝐴2) = det(𝐴)2
for a random square integer matrix 𝐴. Automatic testing
provides SageMath with resilience and makes it easier for
multiple developers to contribute to different parts of the
code base. Currently, about 94 percent of the functions
in SageMath are automatically tested. By default, new re-
leases of SageMath use FLINT, the Fast Library for Number

Theory, to compute the determinants of integer matrices.
For most integer matrices 𝐴 of size 24 × 24 and higher,
FLINT computes the determinant det(𝐴) by calculating
det(𝐴) modulo small primes. The primes are chosen so
that their product is greater than twice the Hadamard
bound. When the entries of 𝐴 are small in comparison to
the size of the matrix, however, FLINT still uses the 𝑝-adic
lifting algorithm. For more information about SageMath’s
current and past determinant algorithms, see [1].

References
[1] Jeroen Demeyer, William Stein, and Ursula Whitcher,

Beyond the black box, preprint, April 2016. arXiv:1604.08472
[math.HO]

[2] Antonio J. Durán, Mario Pérez, and Juan L. Varona, The
misfortunes of a trio of mathematicians using computer alge-
bra systems, Notices Amer. Math. Soc. 61 (2014), 1249–1252.
MR3155350

[3] David Joyner and William Stein, Open source math-
ematical software, Notices Amer. Math. Soc. 54 (2007),
1279.

[4] SageMath ticket #14032, determinant() of integer matrices of
size in [51,63] broken, trac.sagemath.org/ticket/14032.

Credits
Photo of Jeroen Demeyer courtesy of Jeroen Demeyer.
Photo of William Stein courtesy of Dennis Stein.
Photo of Ursula Whitcher courtesy of UWEC Learning and
Technology Services Media Production.

 ABOUT THE AUTHORS

Jeroen has been a SageMath
developer since 2010 and release
manager of SageMath from 2011
to 2013.

 Jeroen Demeyer

William Stein

Ursula Whitcher

Ursula is a SageMath developer.
She has been active in the commu-
nity since 2008 and leads projects
for Women in Sage.

William is the founder of the Sage-
Math mathematical software proj-
ect.

September 2016 Notices of the AMS 3

