Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
For the first time, spacecraft catch a solar shockwave in the act
by Jennifer Chu
MIT News Office
Boston MA (SPX) Feb 20, 2015


File image.

On Oct. 8, 2013, an explosion on the sun's surface sent a supersonic blast wave of solar wind out into space. This shockwave tore past Mercury and Venus, blitzing by the moon before streaming toward Earth. The shockwave struck a massive blow to the Earth's magnetic field, setting off a magnetized sound pulse around the planet.

NASA's Van Allen Probes, twin spacecraft orbiting within the radiation belts deep inside the Earth's magnetic field, captured the effects of the solar shockwave just before and after it struck.

Now scientists at MIT's Haystack Observatory, the University of Colorado, and elsewhere have analyzed the probes' data, and observed a sudden and dramatic effect in the shockwave's aftermath: The resulting magnetosonic pulse, lasting just 60 seconds, reverberated through the Earth's radiation belts, accelerating certain particles to ultrahigh energies.

"These are very lightweight particles, but they are ultrarelativistic, killer electrons -- electrons that can go right through a satellite," says John Foster, associate director of MIT's Haystack Observatory. "These particles are accelerated, and their number goes up by a factor of 10, in just one minute. We were able to see this entire process taking place, and it's exciting: We see something that, in terms of the radiation belt, is really quick."

The findings represent the first time the effects of a solar shockwave on Earth's radiation belts have been observed in detail from beginning to end. Foster and his colleagues have published their results in the Journal of Geophysical Research.

Catching a shockwave in the act
Since August 2012, the Van Allen Probes have been orbiting within the Van Allen radiation belts. The probes' mission is to help characterize the extreme environment within the radiation belts, so as to design more resilient spacecraft and satellites.

One question the mission seeks to answer is how the radiation belts give rise to ultrarelativistic electrons -- particles that streak around the Earth at 1,000 kilometers per second, circling the planet in just five minutes. These high-speed particles can bombard satellites and spacecraft, causing irreparable damage to onboard electronics.

The two Van Allen probes maintain the same orbit around the Earth, with one probe following an hour behind the other. On Oct. 8, 2013, the first probe was in just the right position, facing the sun, to observe the radiation belts just before the shockwave struck the Earth's magnetic field. The second probe, catching up to the same position an hour later, recorded the shockwave's aftermath.

Dealing a "sledgehammer blow"
Foster and his colleagues analyzed the probes' data, and laid out the following sequence of events: As the solar shockwave made impact, according to Foster, it struck "a sledgehammer blow" to the protective barrier of the Earth's magnetic field. But instead of breaking through this barrier, the shockwave effectively bounced away, generating a wave in the opposite direction, in the form of a magnetosonic pulse -- a powerful, magnetized sound wave that propagated to the far side of the Earth within a matter of minutes.

In that time, the researchers observed that the magnetosonic pulse swept up certain lower-energy particles. The electric field within the pulse accelerated these particles to energies of 3 to 4 million electronvolts, creating 10 times the number of ultrarelativistic electrons that previously existed.

Taking a closer look at the data, the researchers were able to identify the mechanism by which certain particles in the radiation belts were accelerated.

As it turns out, if particles' velocities as they circle the Earth match that of the magnetosonic pulse, they are deemed "drift resonant," and are more likely to gain energy from the pulse as it speeds through the radiation belts. The longer a particle interacts with the pulse, the more it is accelerated, giving rise to an extremely high-energy particle.

Foster says solar shockwaves can impact Earth's radiation belts a couple of times each month. The event in 2013 was a relatively minor one.

"This was a relatively small shock. We know they can be much, much bigger," Foster says. "Interactions between solar activity and Earth's magnetosphere can create the radiation belt in a number of ways, some of which can take months, others days. The shock process takes seconds to minutes. This could be the tip of the iceberg in how we understand radiation-belt physics."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
The Sun's activity in the 18th century was similar to that now
Madrid, Spain (SPX) Feb 10, 2015
Counting sunspots over time helps in knowing the activity of our star but the two indices used by scientists disagree on dates prior to 1885. Now an international team of researchers has tried to standardise the historical results and has discovered that, contrary to what one may think, the solar activity of our times is very similar to that of other times, such as the Enlightenment. Scien ... read more


SOLAR SCIENCE
Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

SOLAR SCIENCE
The highest plume ever observed on Mars

Mars One cuts list of potential colonists to 100

Mystery Mars plume baffles scientists

Up, Up and Away! First Humans Chosen for Mission to Mars

SOLAR SCIENCE
The ISS Menu: Mayo, Espressos, Booze? Cosmonauts Reveal Their Secrets

Sensors Detect Icing Conditions to Help Protect Airplanes

Industry: Risk aversion costs more than 'fast failure'

Boeing's Space Efforts to Be Managed by Newly Created Organization

SOLAR SCIENCE
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

SOLAR SCIENCE
Spacesuit woes haunt NASA ahead of crucial spacewalks

Russia Launches Fresh Fruit, Oxygen to Crew on ISS

Space Station 3-D Printed Items, Seedlings Return in the Belly of a Dragon

NASA preparing to reassemble International Space Station

SOLAR SCIENCE
Moog offers "SoftRide" for enhanced spacecraft protection during launch

Russian-Ukrainian Satan Rocket to Launch South Korean Satellite as Planned

Leaders share messages, priorities at AFA Symposium

Soyuz Installed at Baikonur, Expected to Launch Wednesday

SOLAR SCIENCE
Laser 'ruler' holds promise for hunting exoplanets

The mystery of cosmic oceans and dunes

Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

SOLAR SCIENCE
Arachnid Rapunzel: Researchers spin spider silk proteins into artificial silk

Breakthrough may lead to industrial production of graphene devices

New design tool for metamaterials

New self-stretching material developed at University of Rochester




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.