
Californium: Scalable Cloud Services
for the Internet of Things with CoAP

Matthias Kovatsch
Department of Computer Science

ETH Zurich, Switzerland

Email: kovatsch@inf.ethz.ch

Martin Lanter
Department of Computer Science

ETH Zurich, Switzerland

Email: lanterm@student.ethz.ch

Zach Shelby
ARM Inc.

San Jose, CA, USA

Email: zach.shelby@arm.com

Abstract—The Internet of Things (IoT) is expected to inter-
connect a myriad of devices. Emerging networking and backend
support technology not only has to anticipate this dramatic
increase in connected nodes, but also a change in traffic patterns.
Instead of bulk data such as file sharing or multimedia streaming,
IoT devices will primarily exchange real-time sensory and control
data in small but numerous messages. Often cloud services will
handle these data from a huge number of devices, and hence need
to be extremely scalable to support conceivable large-scale IoT
applications. To this end, we present a system architecture for
IoT cloud services based on the Constrained Application Protocol
(CoAP), which is primarily designed for systems of tiny, low-
cost, resource-constrained IoT devices. Along with our system
architecture, we systematically evaluate the performance of the
new Web protocol in cloud environments. Our Californium (Cf)
CoAP framework shows 33 to 64 times higher throughput than
high-performance HTTP Web servers, which are the state of the
art for classic cloud services. The results substantiate that the low
overhead of CoAP does not only enable Web technology for low-
cost IoT devices, but also significantly improves backend service
scalability for vast numbers of connected devices.

I. INTRODUCTION – IOT AND COAP

In accordance with Moore’s Law, the number of components

per integrated circuit at minimal cost doubles approximately

every two years. In the vision of the Internet of Things (IoT),

however, this gain is not used to increase the computing power

of devices, but to decrease power consumption, to integrate

whole systems on a tiny chip, and in particular to minimize

unit costs. Very low prices will lead to myriads of IoT devices

deployed in homes, office buildings, factories, whole cities,

and other environments of interest. This also means that most

nodes in the IoT will remain resource-constrained and will

require lightweight protocols. Yet with about 100 KiB of ROM

and about 10 KiB of RAM, devices are capable of directly

connecting to the Internet in a secure manner. These are so-

called Class 1 devices, for which lightweight IP solutions

such as 6LoWPAN and RPL have been standardized in the

Internet Engineering Task Force (IETF) [7], [19]. This allows

for seamless integration of sensor and actuator nodes into the

Internet, thereby connecting the virtual world of computers

with the physical world of our daily lives.

For full convergence, however, devices and services must

also interoperate at the application layer. When it comes to

mashing up different services, the World Wide Web has proven

most flexible and scalable. This motivated the Web of Things

initiative, which advocates using the REST architectural style

to design IoT applications and the ubiquity of HTTP to interact

with devices [5]. HTTP over TCP has problems in constrained

environments, though, in particular with the small frame sizes

and the lossy links of low-power wireless communication.

Instead of adding the problems of compression to the problems

of HTTP, the IETF designed a new Web protocol from scratch:

the Constrained Application Protocol (CoAP) [15]. CoAP

follows REST, but is tailored to the requirements of low-

cost devices and IoT application scenarios. It uses a compact

binary format and runs over UDP (or DTLS when security

is enabled), which also enables multicast communication. A

messaging sub-layer adds a thin control layer that provides

duplicate detection and reliable delivery of messages based

on a simple stop-and-wait mechanism for retransmissions.

On top, the request/response sub-layer enables RESTful in-

teraction through the well-known methods GET, PUT, POST,

and DELETE as well as response codes that are defined in

accordance to the HTTP specification. CoAP resources are

addressable by URIs, and Internet Media Types are used

to represent resource state. RESTful caching and proxying

enables network scalability. Yet CoAP offers features that go

beyond HTTP 1.1, and hence make it a better fit for the IoT:

1) Resources are observable, that is, extra responses con-

tinuously push state changes to all registered clients [6].

2) The extension to a request/multiple-response pattern also

enables RESTful group communication where multiple

servers respond to a request that is sent to an IP multicast

address [13].

3) CoAP includes a machine-to-machine discovery mecha-
nism to find matching resources based on Web Linking

[10], [14]. It uses either multicast or resource directories

[16] where devices register on start-up.

4) Application-layer fragmentation allows blockwise on-

the-fly processing of messages that would otherwise

exceed the maximum transmission unit (MTU) of 1280

bytes or the potentially even smaller buffers of highly

resource-constrained devices [3].

5) Finally, CoAP supports alternative transports such as

Short Message Service (SMS) or Unstructured Sup-

plementary Service Data (USSD), while maintaining

interoperability at the application layer [17].

Given the low unit costs and open Internet standards,

analysts expect more than 200 billion IoT devices by the end of

2020 [1]. While many research efforts have targeted the chal-

lenges of constrained environments with little resources and

lossy radio links, the impact of a myriad of IoT devices on the

existing Internet infrastructure so far has gained little attention.

Nonetheless, IoT traffic is quite different from human-centered

Web applications and file sharing. Instead of bulk data, IoT

nodes will primarily exchange real-time sensory and control

data in small but numerous messages. A typical scenario is

using a cloud service to manage a large number of devices,

process their data, and orchestrate their actuation. In this paper,

we study the benefits of CoAP’s low overhead for IoT cloud

services, in particular scalability to handle huge numbers of

concurrently connected IoT devices. Our contributions are:

• A system architecture that outperforms state-of-the-art

Web servers as well as other CoAP solutions

• The first performance evaluation of CoAP in uncon-

strained environments such as the IoT service backend

• A re-implementation of our Californium (Cf) CoAP

framework, which is explicitly designed for scalable IoT

cloud services and is publicly available at the Eclipse

Foundation: http://www.eclipse.org/californium

II. SCALABLE SYSTEMS FOR THE IOT BACKEND

Our system architecture for CoAP-based IoT cloud services

is inspired by previous work for highly concurrent Internet

services, in particular the Staged Event-Driven Architecture
(SEDA) [18] and the PIPELINED architecture [4]. Other

related work is discussed in Sec. IV.

SEDA splits the message-handling process into multiple

stages. Each stage consists of an incoming event queue, a

thread pool, and an event handler that executes the logic of the

stage. The threads pull events from the event queue and invoke

the event handler, which can dispatch new events to the next

stage through their connecting queue. Each stage is managed

by a controller that can dynamically change the configuration

according to a policy. Therefore, each stage of a SEDA server

can self-tune itself to have an optimal number of threads.

PIPELINED can be considered a special form of SEDA,

as a pipeline is a chain of single-threaded stages. The threads

belong to the same pool, though, which results in better cache

behavior when switching between stages. Usually, a server

creates one pipeline per core to achieve good scalability.

We propose a 3-stage architecture as depicted in Fig. 1.

It is mainly based on the lessons learned from our initial

Californium (Cf) implementation [9]. Like SEDA, each stage

is decoupled by queues and has its own concurrency model.

The thread pool size does not depend on a dynamic scheduling

policy, though, but only on the application requirements and

the execution platform. This reduces complexity and the over-

head of monitoring tasks. By default, the number of threads

equals the number of cores and multiple messages can traverse

our processing chain in parallel, similar to PIPELINED. We

re-designed our CoAP framework from scratch and made the

new Californium available under EPL+EDL dual-licensing.

E
xc

ha
ng

e
S

to
re

Blockwise Layer
Observe Layer
Token Layer

Reliability Layer

Matching & Deduplication
Message Serialization

()

S
ta

ge
 1

S
ta

ge
 2

: P
ro

to
co

l (
C

oA
P

)
S

ta
ge

 3
: L

og
ic

Network

A1

A2

B2

B1

A

B

Root

Fig. 1. Our architecture has three decoupled stages with individual thread
pools. The CoAP protocol is executed in the second stage: the Blockwise
Layer fragments requests and responses for blockwise transfers (in atomic
fashion [3]); the Observe Layer handles observe relationships and orders
notifications; the Token Layer ensures the unique matching of responses
to open requests; the Reliability Layer manages retransmission timeouts.
Matching incoming messages to their state in the Exchange Store happens
outside this stack, so that it becomes a pure processing pipeline without
synchronization overhead.

The network stage (see Fig. 1 bottom) is responsible for

receiving and sending byte arrays over the network. It therefore

abstracts the transport protocol, which is typically UDP or

DTLS for CoAP. Micro-benchmarks show that using more

than one thread to move data through the socket can increase

the throughput on some platforms, but also decrease it on

others. Since we wrap the process for receiving and sending

in its own independent stage, the server can chose an optimal

number of threads for a specific platform without affecting

other stages. For our Windows 7 quad-core reference system,

for instance, using four receiver and four sender threads (4/4)

instead of one each (1/1) almost doubles the achievable data

rate of the provided UDP socket. On Linux (RHEL6), however,

increasing to two threads (2/2) causes a 40% setback in

throughput. Thus, the default configuration uses one sender

and one receiver thread per core on Windows and a single

one each on Linux. Other configurations can further improve

the performance depending on the platform. On a Xeon-based

server system with 10-gigabit Ethernet, for instance, a 1/2

configuration achieved best results for both operating systems.

The protocol stage executes the CoAP protocol and has

a thread pool with as many threads as cores by default.

We kept the multi-layer CoAP stack of the initial Cf design

for its advantages in understandability, maintainability, and

extensibility of the code. Originally, each layer managed its

own state to execute the protocol, e.g., the Transaction Layer

stored all messages and timers to perform retransmissions

and the Token Layer did the housekeeping for open requests

and their tokens. This makes the stack perfectly modular, but

at the price of a high synchronization overhead and risk of

memory leaks because of the scattered data. Therefore, we

separated bookkeeping and processing: An Exchange object

now holds all data and timers necessary for a request/response

exchange and our stack is a pure processing pipeline. When

a message arrives, a matching step outside the stack accesses

the Exchange Store (a ConcurrentHashMap) only once

to retrieve the necessary state or to create a new exchange.

The associated exchange is then passed along with the current

message, layer by layer. Once an exchange completes, the

system removes its reference to the exchange and the garbage

collector automatically reclaims the memory.

The business logic stage depends on the role: (1) Servers

host Web resources that are structured in a logical tree. By

default, the server stage has no thread pool and a thread

from the protocol stage invokes the resource handler, which

takes the request and produces the corresponding response.

Developers can, however, choose their preferred concurrency

model (e.g., to prioritize or balance their Web resources) by

optionally configuring thread pools at individual resources

(using a Java Executor in our implementation). If a resource

does not define a thread pool, the thread pool of its parent,

transitive ancestor, or eventually the protocol stage will be

used. (2) Clients can also define their own concurrency model

and use our CoapClient API, which supports synchronous

and asynchronous requests. Synchronous calls hand the re-

quest over to the protocol stage and block until the response

is delivered by a protocol-stage thread. Asynchronous API

calls return immediately and by default the protocol-stage

thread will execute the response handler registered for this

exchange—similar to a Web resource handler. Both roles can

be combined by acquiring a CoapClient that is associated

with a specific Web resource, allowing an application model

similar to Actinium [8].

We encapsulate the protocol and network stages into

Endpoint objects. Thus, alternative transports (UDP, DTLS,

SMS, etc.) can provide their variations of the CoAP stack in

a modular way. A server can also have multiple endpoints

to make resources available over multiple channels and also

to easily distinguish between different network interfaces (a

problem introduced by many OS datagram APIs). Our system

already comes with endpoint classes for UDP and DTLS; a

multicast endpoint is currently under development.

III. EVALUATION

We evaluate our system for scalable IoT cloud services

through benchmarks and comparison to the state of the art,

both high-performance HTTP Web servers and other CoAP

solutions. IoT applications can have different communication

models, which results in different evaluation scenarios:

1) Cloud service as server: This is the typical scenario

for Web 2.0 and HTTP-based IoT applications. Since

HTTP is missing an efficient server push mechanism,

IoT devices are usually programmed as HTTP clients

that POST their data to the service (and are able to

sleep in between). For CoAP, this scenario applies for

resource directories that are used for device management

and discovery [16]. IoT devices register on start-up

and periodically update their status using requests while

other devices or services perform look-ups.

2) Cloud service as client: With CoAP’s push mechanism,

the server role has become practical for IoT devices,

which enables an application-agnostic IoT device infras-

tructure (cf. [9]). The cloud service is a client and takes

over the role of a Web mashup engine that sends requests

to the devices for actuation and observes resources for

monitoring and sensing tasks.

3) Cloud service as both: Complex business logic re-

quires both roles by the service, e.g., to observe de-

vice resources and to provide computed results again

as resources for other services. For instance, the

OMA Lightweight M2M (LWM2M) specification is built

around this scenario. The LWM2M server is a resource

directory that receives registration and look-up requests

from devices, but also issues requests to their resources.

This means that IoT devices are hybrids as well: they

are primarily CoAP servers, but use requests to register

with the service (and thereby open ports in firewalls).

We use the cloud-service-as-server scenario because it

allows for a direct comparison with HTTP servers, the current

state of the art for scalable cloud services. For Californium,

the results for this scenario can be transferred to the other

two scenarios (in particular the handling of incoming observe

notifications), since clients and servers use the same stack due

to the shared message format and equal processing of requests

and responses.

A. CoAPBench

While there are plenty of benchmark tools available for

HTTP, to the best of our knowledge, there is none for CoAP.

Therefore, we developed Cf-CoAPBench, a tool similar to

ApacheBench. It uses virtual clients to meet the defined

concurrency factor. To have enough resources to saturate the

server and keep all collected statistics in memory, CoAPBench

can be distributed over multiple machines. A master controls

the benchmark by establishing a TCP connection to all slave

instances. We designed this master/slave mechanism to be

able to execute third-party benchmark tools as well. Thus,

we can run ApacheBench distributed and synchronized over

multiple machines and bring even very powerful HTTP servers

into saturation. Note that master and slaves only communicate

before and after the experiment, so that the network traffic is

not influenced by our tool.

CoAPBench adheres to basic congestion control, that is,

each CoAP client sends Confirmable requests and waits for

the response before the next request is issued. We disable

retransmissions, though, to not blur the numbers of sent and

successfully handled requests. In case of message loss, a client

times out after 10 seconds, records the loss in a separate

counter, and continues with a new request.

B. Setup

The evaluation focuses on the performance and scalability

of the protocol handling by the systems—not the business

logic. Thus, CoAPBench issues simple GET requests to a

“/benchmark” resource, which responds with a short “hello

world.”1 CoAP and HTTP requests and responses are seman-

tically equal (including header field information).

We run CoAPBench distributed on three machines as de-

picted in Fig. 2. The hardware for the system under test is

specified in the respective experiments below. We increase

the concurrency factor stepwise from 10 to 10,000 and stress

the server for 60 seconds, followed by a 15 seconds cool-

down period before continuing with the next step. To have

deterministic results, we also disable Hyper-Threading and

Turbo-Boost on the machine executing the systems under test.

C. Multi-core Support

Our new architecture design specifically focuses on the uti-

lization of multiple CPU cores. We evaluate this by measuring

the throughput with different processor affinity settings (one

run each) and comparing the results of the new Californium

to the initial implementation (Initial-Cf) for reference. For

these benchmarks, the CoAP servers are running on a laptop

machine with an Intel i7-3720M processor at 2.6 GHz, 24 GiB

RAM, and Intel 82579LM Gigabit Ethernet adapter.

Multi-threading support was added rather late in the initial

Cf design. A single thread was receiving messages from

the socket and executed the CoAP stack upward. Only at

the top, the request was handed over to a fixed-size thread

pool, which dispatched one of its ten workers to execute

the resource handler and send the response down the multi-

layer stack and through the socket. This caused significant

synchronization overhead, since up to eleven threads worked

on several hashmaps that were distributed over all layers of

the protocol stack.

Fig. 3 shows that our proposed architecture scales better

with the number of available cores. Using two instead of a

single core almost exactly doubles the throughput. On four

cores, we perform about 3.4 times better than on one core,

which is reasonable since not all tasks can be parallelized.

Socket I/O, for instance, is partly done in the kernel and

always runs on ‘Core 0’ on Windows machines. Our maximum

throughput (on this machine) is 137,592 requests per second

versus 71,255 requests per second for the initial Cf.

1To achieve the best results, we request the ‘natural’ resource of each server:
for Apache, this is /benchmark/index.php, for Tomcat and Node.js
/benchmark/ (with slash), and /benchmark for the remaining servers.

Co
AP

Be
nc

h
Co

AP
Be

nc
h

Co
AP

Be
nc

h Intel Core i7-4770 CPU @ 3.40 GHz
16 GiB RAM
Intel Ethernet Connection I217-V

Windows 7 Enterprise SP1 64-bit

Sy
st

em
un

de
r t

es
t Different hardware

Windows 7
Enterprise SP1 64-bit
Java 1.7.0_09
HotSpot 64-bit JVM N

et
ge

ar
 G

S1
08

Gi

ga
bi

t S
w

itc
h

Fig. 2. All CoAP and HTTP servers are tested in this setup.

0 k
20 k
40 k
60 k
80 k

100 k
120 k
140 k

10 100 1,000 10,000

Re
qu

es
ts

 p
er

 se
co

nd

Number of concurrent clients

1 core 2 cores
3 cores 4 cores

(a) Initial-Cf

0 k
20 k
40 k
60 k
80 k

100 k
120 k
140 k

10 100 1,000 10,000
Number of concurrent clients

(b) Californium

Fig. 3. We evaluate the utilization of the available CPU cores using an
affinity tool. Both CoAP systems stay stable at high concurrency factors. Our
new system architecture achieves a much higher throughput, though.

D. Comparison with the State of the Art

For this experiment, we compare our system to six state-of-

the-art HTTP servers (Apache HTTP Server (2.4.6), Tomcat
(7.0.34), Node.js (0.10.20), Grizzly (2.3.6), Jetty (9.1.5), and

Vert.x (1.3.1-final)) as well as four CoAP implementations, our

Initial-Cf, the Sensinode NanoService Platform, nCoAP, and

the OpenWSN Python Library (see Sec. IV for more details).

The servers run on a machine similar to the CoAPBench

machines described in Fig. 2. We run Californium in the

default configuration for Windows (4/4/4) and also optimize

the configurations of the other servers for this platform. The

reported results are averages over ten runs.

1) With Keep-alive: First we evaluate the performance with

the keep-alive option of HTTP/1.1, that is, a client re-uses

a single TCP connection for all subsequent requests. This

saves costly round-trip times for the handshake and remedies

the slow-start mechanism of TCP. Here, Vert.x performs best

among the HTTP solutions as seen in Fig. 4. It impressively

solves the so-called ‘C10K problem,’ being able to maintain

10,000 concurrent TCP connections to its clients at high

throughput. Vert.x is the only server with high standard

deviation, though, which is indicated by error bars (±1σ). Jetty

shows stable performance for high concurrency factors as well,

which is why it is also popular for IoT applications. Tomcat

has good performance on its first run, but automatically dis-

ables keep-alive once it experiences high concurrency factors

and the throughput drops for all subsequent runs (indicated

by the dotted light blue line). Thus, we limit the number of

concurrent clients to 200 to keep Tomcat in the range it is

originally designed for. Its successor Grizzly scales better and

only gives in at around 5,000 simultaneous clients.

The Initial-Cf and Sensinode CoAP servers exhibit sim-

ilar performance as Jetty and Grizzly. Although nCoAP is

connectionless like all CoAP servers, it drops from a good

first run (indicated by the dotted gray line) down to about

30,000 requests per second on average. Overall, Californium

performs best with up to almost 400,000 requests per second

and stable throughput for high concurrency factors. We also

indicate the standard deviation for our system; it is so small,

however, that the error bars are mostly hidden behind the data

points. We pay for the high throughput under heavy load with

a slightly slower growth in the beginning: Due to the context

switch between the network stage and the protocol stage, the

Californium Initial-Cf Sensinode nCoAP OpenWSN Vert.x Jetty Grizzly Tomcat Node.js Apache + PHP

0 k

50 k

100 k

150 k

200 k

250 k

300 k

350 k

400 k

10 100 1,000 10,000

Re
qu

es
ts

 p
er

 se
co

nd

Number of concurrent clients (log.)

Fig. 4. Throughput with HTTP keep-alive: Modern architectures for HTTP
servers can handle a high number of parallel TCP connections. However,
CoAP in general scales better for high concurrency factors and our system
can handle the most requests per second.

processing time is longer than, for instance, the one of the

very efficient Sensinode implementation. Since CoAPBench

always waits for a request to finish before issuing the next

one, the clients spend more time waiting for the response and

hence a few clients cannot saturate our system. Yet for low

concurrency factors, 99% of all requests still finish in under

half a millisecond.

The Apache Web server with PHP is not designed for highly

scalable cloud services. However, Apache is still the most

popular Web server and is included for reference. It achieves

a steady throughput at about 7,000 requests per second until

3,500 concurrent clients. Beyond that point, the performance

slowly declines.

2) Without Keep-alive: In an IoT scenario, devices often

close the connection after each request to resume sleep.

Furthermore, we expect the high message rates to originate

from tens of millions of IoT devices sending alternately in

minute or hour intervals, rather than tens of thousands sending

constantly at very high rate. Scenarios for this are sensors

deployed throughout a smart metropolis or smart metering. As

a consequence, we focus on the throughput behavior without

the keep-alive option (i.e., a new TCP connection for each

request), since a cloud service simply cannot maintain a

standing connection to every device. This does not affect the

CoAP results, since it is connectionless, and we can use the

measurements reported above for comparison.

Fig. 5 shows that HTTP suffers from the overhead of TCP,

whose avoidance was in fact one of the design goals behind

CoAP. Here, we use a logarithmic scale on the y-axis to

cover all results in a single graph. Apache actually performs

similarly with and without keep-alive, so its series can be used

for reference when comparing Fig. 4 and Fig. 5.

Having a stable throughput at high concurrency factors,

Node.js now performs best among the HTTP servers. The clus-

ter mode has good scalability for short-lived TCP connections

and can handle almost 6,000 requests per second at 10,000

simultaneous clients. Node.js is followed by Tomcat, Apache,

and Grizzly, which all converge toward about 3,500 requests

per second at the end. Without keep-alive, the servers designed

100

1,000

10,000

100,000

1,000,000

10 100 1,000 10,000

Re
qu

es
ts

 p
er

 se
co

nd
 (l

og
.)

Number of concurrent clients (log.)

Fig. 5. Throughput without HTTP keep-alive: HTTP servers mainly suffer
from TCP overhead: the three-way handshake and slow-start mechanism. Yet
short-lived message exchanges from myriads of devices is the expected traffic
pattern in the IoT.

to overcome the C10K problem, Vert.x and Jetty, drop from

10,000 to about 2,000 requests per second already for more

than 50 concurrent clients.

In highly concurrent scenarios as found in the IoT, CoAP so-

lutions perform much better than HTTP-based cloud services

in terms of scalability. The logarithmic scale shows that our

system also performs an order of magnitude better than other

CoAP implementations. Compared to state-of-the-art HTTP

solutions, CoAP can achieve a 33 times higher throughput for

conservative concurrency factors (up to 200). For concurrency

factors as expected in IoT scenarios, it even has a 64-fold

increase in throughput compared to HTTP. This is mostly due

to the 3-way handshake and tear-down of TCP connections,

which leads to at least 9 messages to execute a single request.

The overhead of the verbose HTTP headers slows the systems

down further, especially considering the small payloads that

are typical for IoT traffic.

IV. RELATED WORK

Researchers have been enhancing architectures for Web

servers since the advent of the Web itself to scale with the

ever-growing traffic. Because of the similarity between CoAP

and HTTP (both are REST implementations), we took HTTP-

based designs into account, in particular since almost no CoAP

backend system architectures exists so far in practice.

A. HTTP Server Architectures

The Multi-Threaded (MT) server architecture assigns each

incoming TCP connection to one worker thread that handles

the request. This allows to serve each request without delays

and best performance is achieved when the number of threads

equals the number of expected concurrent requests [2]. When

the number of concurrent clients grows, however, the large

number of threads causes significant synchronization overhead

and high memory usage due to the separate stacks. This is

the main drawback of MT, especially when HTTP/1.1 keeps

connections alive for a long time. The MT architecture is used

in the Apache HTTP Server and the Tomcat server for Java

Servlets and JavaServer Pages (JSP) when using the original

blocking I/O connector, which is the default.

A more recent trend is to use non-blocking I/O in a Single-
Process Event-Driven (SPED) architecture. A single event-

dispatching thread keeps popping tasks from a global queue

and executes them one after the other. Thus, no synchroniza-

tion is required, context-switches can be saved, and data are

always cache-local. However, SPED cannot directly benefit

from multiple cores and many operating systems do not

provide suitable support for non-blocking operations [11]. As a

result, SPED has been augmented with helper threads to wrap

blocking I/O. This extension is called Asynchronous Multi-

Process Event-Driven (AMPED) [11]. A multi-core variant is

Co-AMPED, which runs one AMPED process per core [12].

Node.js, which introduces server-side JavaScript for cloud

services, is a good example for the pure SPED architecture. We

use its cluster mode, though, which enables replication similar

to Co-AMPED. Project Grizzly is originally a component of

the GlassFish Java Enterprise Edition application server that

provides the HTTP server interface. It uses Java’s ‘New I/O’

API for higher scalability, also following the concepts of

SPED. Using a central thread pool that can use all cores, Jetty
connects different kinds of connectors with handlers. Vert.x is

staged and has an event-driven architecture. It combines non-

blocking network I/O (using the Netty project) and support for

several languages to implement the business logic in so-called

‘verticles.’ To become scalable on multi-cores, the default is

to run multiple instances of the same verticle in parallel (one

per core for our benchmarks).

B. CoAP Implementations

There exist a number of CoAP implementations, most of

them targeting resource-constrained environments, though. In

this paper, we focus on the use of CoAP in the IoT service

backend. Here, the Sensinode NanoService Platform2 is a

commercial solution that offers good support for industry-

relevant features such as OMA Lightweight M2M support and

in-memory data grid caching for big data. nCoap3 and jCoAP4

are open-source Java projects that are best comparable to our

framework. The latter, however, only implements a deprecated

draft version of CoAP at the time of writing, and hence is not

included in the benchmarks. The OpenWSN project5 provides

a Python library, which primarily targets easy interaction with

devices, though. Thus, it is benchmarked non-competitively.

V. CONCLUSIONS

This paper presents a system architecture for scalable IoT

cloud services based on CoAP. It is inspired by proven

architectures for Web servers that have evolved over time. Our

evaluation shows that our 3-stage architecture fully utilizes

the resources of today’s multi-core systems. Our Californium

(Cf) reference implementation, whose source code is publicly

available, outperforms other CoAP systems with a three times

higher throughput.

2http://www.sensinode.com/
3https://github.com/okleine/nCoAP
4https://code.google.com/p/jcoap/
5http://www.openwsn.org/

As a more general result, we show that CoAP’s low over-

head also has significant advantages over HTTP in the IoT

service backend. With up to 64 times higher throughput than

state-of-the-art Web servers, CoAP-based cloud services can

handle the expected myriad of IoT devices in an efficient

way. Thus, we propose to limit the use of CoAP-HTTP cross-

proxies to the transitional period. In the long-run, IoT cloud

services and Web integration platforms need to speak CoAP

directly to be able to scale to vast numbers of concurrently

connected devices. Note that when an IoT cloud service

interacts with a small number of other services or a load

balancer, long-lasting TCP connections using HTTP/2.0 or the

upcoming CoAP-over-TCP binding are still a good choice.
This work focuses on the essential networking and backend

support technology to implement the vision of the IoT. In fu-

ture work, we want to take security aspects into consideration:

A DTLS handshake, for instance, poses similar problems as

establishing a TCP connection. To achieve optimal security

profiles for the IoT, similar experiments need to be run

with CoAPS and HTTPS once the (D)TLS v1.3 specification

stabilizes.

REFERENCES

[1] Worldwide Internet of Things (IoT) 2013–2020 Forecast: Billions of
Things, Trillions of Dollars. Market Analysis 243661, IDC, 2013.

[2] V. Beltran, J. Torres, and E. Ayguade. Understanding Tuning Complexity
in Multithreaded and Hybrid Web Servers. In Proc. IPDPS, Miami, FL,
USA, 2008.

[3] C. Bormann and Z. Shelby. Blockwise transfers in CoAP. draft-ietf-
core-block-14, 2013.

[4] G. S. Choi, J.-H. Kim, D. Ersoz, and C. R. Das. A Multi-threaded
PIPELINED Web Server Architecture for SMP/SoC Machines. In Proc.
WWW, Chiba, Japan, 2005.

[5] D. Guinard, V. Trifa, and E. Wilde. A Resource Oriented Architecture
for the Web of Things. In Proc. IoT, Tokyo, Japan, 2010.

[6] K. Hartke. Observing Resources in CoAP. draft-ietf-core-observe-14,
2014.

[7] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks. RFC 6282, 2011.

[8] M. Kovatsch, M. Lanter, and S. Duquennoy. Actinium: A RESTful
Runtime Container for Scriptable Internet of Things Applications. In
Proc. IoT, Wuxi, China, 2012.

[9] M. Kovatsch, S. Mayer, and B. Ostermaier. Moving Application Logic
from the Firmware to the Cloud: Towards the Thin Server Architecture
for the Internet of Things. In Proc. IMIS, Palermo, Italy, 2012.

[10] M. Nottingham. Web Linking. RFC 5988, 2010.
[11] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An Efficient and

Portable Web Server. In Proc. USENIX, Monterey, CA, USA, 1999.
[12] S. Palchaudhuri, R. Kumar, and A. K. Saha. A Web Server Architecture

for Symmetric Multiprocessor System. Project Report for Comp520,
Department of Computer Science, Rice University, 2000.

[13] A. Rahman and E. Dijk. Group Communication for CoAP. draft-ietf-
core-groupcomm-19, 2014.

[14] Z. Shelby. Constrained RESTful Environments (CoRE) Link Format.
RFC 6690, 2012.

[15] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application
Protocol (CoAP). RFC 7252, 2014.

[16] Z. Shelby, S. Krco, and C. Borman. CoRE Resource Directory. draft-
ietf-core-resource-directory-01, 2013.

[17] B. Silverajan and T. Savolainen. CoAP Communication with Alternative
Transports. draft-silverajan-core-coap-alternative-transports-04, 2014.

[18] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture for Well-
conditioned, Scalable Internet Services. In Proc. SOSP, Banff, Canada,
2001.

[19] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. P. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks. RFC6550, 2012.

