1932

Abstract

When I entered graduate school in 1963, the golden age of molecular biology had just begun, and myoglobin was the only protein with a known high-resolution structure. The romance of working out the structure of a virus by X-ray crystallography nonetheless captured both my imagination and the ensuing 15 years of my scientific life, during which “protein crystallography” began to morph into “structural biology.” The course of the research recounted here follows the broader, 50-year trajectory of structural biology, as I could rarely resist opportunities to capitalize on new technologies when they opened some interesting part of biology to three-dimensional rigor. That fascination shows no sign of subsiding.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-033857
2015-06-02
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-033857.html?itemId=/content/journals/10.1146/annurev-biochem-060614-033857&mimeType=html&fmt=ahah

Literature Cited

  1. Oren DA. 1.  1985. Joining the Club: A History of Jews and Yale New Haven, CT: Yale Univ. Press
  2. Finberg L, Harper PA, Harrison HE, Sack RB. 2.  1982. Oral rehydration for diarrhea. J. Pediatr. 101:497–99 [Google Scholar]
  3. Caspar DLD, Klug A. 3.  1962. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27:1–24 [Google Scholar]
  4. Bawden FC, Pirie NW. 4.  1938. Crystalline preparations of tomato bushy stunt virus. Br. J. Exp. Pathol. 29:251–63 [Google Scholar]
  5. Bernal JD, Fankuchen I, Riley DP. 5.  1938. Structure of the crystals of tomato bushy stunt virus. Nature 142:1075–75 [Google Scholar]
  6. Harrison SC. 6.  1968. A point focusing camera for single-crystal diffraction. J. Appl. Cryst. 1:84–80 [Google Scholar]
  7. Rossmann MG, Blow DM. 7.  1962. The detection of sub-units within the crystallographic asymmetric unit. Acta Crystallogr. 15:24–31 [Google Scholar]
  8. Rossmann MG, Blow DM. 8.  1962. Determination of phases by the conditions of non-crystallographic symmetry. Acta Crystallogr. 16:39–45 [Google Scholar]
  9. Crowther RA. 9.  1969. The use of non-crystallographic symmetry for phase determination. Acta Crystallogr. B 25:2571–80 [Google Scholar]
  10. Rossmann MG. 10.  1961. Application of the Buerger minimum function to protein structures. Int. Trans. Comp. Sci. Technol. Appl. 4:252–61 [Google Scholar]
  11. Crowther RA, Amos LA, Finch JT, De Rosier DJ, Klug A. 11.  1970. Three dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs. Nature 226:421–25 [Google Scholar]
  12. Crowther RA, Amos LA. 12.  1971. Three-dimensional image reconstructions of some small spherical viruses. Cold Spring Harb. Symp. Quant. Biol. 36:489–94 [Google Scholar]
  13. Harrison SC. 13.  1971. Structure of tomato bushy stunt virus at 25 Å resolution. Cold Spring Harb. Symp. Quant. Biol. 36:495–501 [Google Scholar]
  14. Rosenbaum G, Holmes KC, Witz J. 14.  1971. Synchrotron radiation as a source for X-ray diffraction. Nature 230:434–37 [Google Scholar]
  15. Jack A, Harrison SC, Crowther RA. 15.  1975. Structure of tomato bushy stunt virus. II. Comparison of results obtained by electron microscopy and X-ray diffraction. J. Mol. Biol. 97:163–72 [Google Scholar]
  16. Harrison SC, Jack A. 16.  1975. Structure of tomato bushy stunt virus. Three-dimensional X-ray diffraction analysis at 16 Å resolution. J. Mol. Biol. 97:173–91 [Google Scholar]
  17. Winkler FK, Schutt CE, Harrison SC. 17.  1979. The oscillation method for crystals with very large unit cells. Acta Crystallogr. A 35:901–11 [Google Scholar]
  18. Winkler FK, Schutt CE, Harrison SC, Bricogne G. 18.  1977. Tomato bushy stunt virus at 5.5-Å resolution. Nature 265:509–13 [Google Scholar]
  19. Guogas LM, Filman DJ, Hogle JM, Gehrke L. 19.  2004. Cofolding organizes alfalfa mosaic virus RNA and coat protein for replication. Science 306:2108–11 [Google Scholar]
  20. Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G. 20.  1978. Tomato bushy stunt virus at 2.9 Å resolution. Nature 276:368–73 [Google Scholar]
  21. Hopper P, Harrison SC, Sauer RT. 21.  1984. Structure of tomato bushy stunt virus. V. Coat protein sequence determination and its structural implications. J. Mol. Biol. 177:701–13 [Google Scholar]
  22. Bloomer AC, Champness JN, Bricogne G, Staden R, Klug A. 22.  1978. Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits. Nature 276:362–68 [Google Scholar]
  23. Kruse J, Kruse KM, Witz J, Chauvin C, Jacrot B. 23.  et al. 1982. Divalent ion–dependent reversible swelling of tomato bushy stunt virus and organization of the expanded virion. J. Mol. Biol. 162:393–414 [Google Scholar]
  24. Robinson IK, Harrison SC. 24.  1982. Structure of the expanded state of tomato bushy stunt virus. Nature 297:563–68 [Google Scholar]
  25. Hogle JM, Maeda A, Harrison SC. 25.  1986. Structure and assembly of turnip crinkle virus. I. X-ray crystallographic structure analysis at 3.2 Å resolution. J. Mol. Biol. 191:625–38 [Google Scholar]
  26. Hogle JM, Chow M, Filman DJ. 26.  1985. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229:1358–65 [Google Scholar]
  27. Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP. 27.  et al. 1985. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–53 [Google Scholar]
  28. Abad-Zapatero C, Abdel-Meguid SS, Johnson JE, Leslie AG, Rayment I. 28.  et al. 1980. Structure of Southern bean mosaic virus at 2.8 Å resolution. Nature 286:33–39 [Google Scholar]
  29. Wikoff WR, Liljas L, Duda RL, Tsuruta H, Hendrix RW. 29.  et al. 2000. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289:2129–33 [Google Scholar]
  30. Wilson IA, Skehel JJ, Wiley DC. 30.  1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–73 [Google Scholar]
  31. Wiley DC, Wilson IA, Skehel JJ. 31.  1981. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289:373–78 [Google Scholar]
  32. Earnshaw WC, Casjens S, Harrison SC. 32.  1976. Assembly of the head of bacteriophage P22: X-ray diffraction from heads, proheads and related structures. J. Mol. Biol. 104:387–410 [Google Scholar]
  33. Earnshaw WC, Harrison SC. 33.  1977. DNA arrangement in isometric phage heads. Nature 268:598–602 [Google Scholar]
  34. ter Haar E, Musacchio A, Harrison SC, Kirchhausen T. 34.  1998. Atomic structure of clathrin: A β propeller terminal domain joins an α zigzag linker. Cell 95:563–73 [Google Scholar]
  35. Fotin A, Cheng Y, Sliz P, Grigorieff N, Harrison SC. 35.  et al. 2004. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432:573–79 [Google Scholar]
  36. Sorger PK, Stockley PG, Harrison SC. 36.  1986. Structure and assembly of turnip crinkle virus. II. Mechanism of reassembly in vitro. J. Mol. Biol. 191:639–58 [Google Scholar]
  37. Pabo CO, Lewis M. 37.  1982. The operator-binding domain of λ repressor: structure and DNA recognition. Nature 298:443–47 [Google Scholar]
  38. Anderson WF, Ohlendorf DH, Takeda Y, Matthews BW. 38.  1981. Structure of the cro repressor from bacteriophage λ and its interaction with DNA. Nature 290:754–58 [Google Scholar]
  39. Seeman NC, Rosenberg JM, Rich A. 39.  1976. Sequence-specific recognition of double helical nucleic acids by proteins. PNAS 73:804–8 [Google Scholar]
  40. Wing R, Drew H, Takano T, Broka C, Tanaka S. 40.  et al. 1980. Crystal structure analysis of a complete turn of B-DNA. Nature 287:755–58 [Google Scholar]
  41. Anderson JE, Ptashne M, Harrison SC. 41.  1987. Structure of the repressor–operator complex of bacteriophage 434. Nature 326:846–52 [Google Scholar]
  42. Aggarwal AK, Rodgers DW, Drottar M, Ptashne M, Harrison SC. 42.  1988. Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science 242:899–907 [Google Scholar]
  43. Wolberger C, Dong YC, Ptashne M, Harrison SC. 43.  1988. Structure of a phage 434 Cro/DNA complex. Nature 335:789–95 [Google Scholar]
  44. Mondragon A, Harrison SC. 44.  1991. The phage 434 Cro/OR1 complex at 2.5 Å resolution. J. Mol. Biol. 219:321–34 [Google Scholar]
  45. Seeman NC, Rosenberg JM, Rich A. 45.  1976. Sequence specific recognition of double helical nucleic acids by proteins. PNAS 73:804–8 [Google Scholar]
  46. Wharton RP, Brown EL, Ptashne M. 46.  1984. Substituting an α-helix switches the sequence-specific DNA interactions of a repressor. Cell 38:361–69 [Google Scholar]
  47. Panne D, Maniatis T, Harrison SC. 47.  2004. Crystal structure of ATF-2/c-Jun and IRF-3 bound to the interferon-β enhancer. EMBO J. 23:4384–93 [Google Scholar]
  48. Marmorstein R, Carey M, Ptashne M, Harrison SC. 48.  1992. DNA recognition by GAL4: structure of a protein–DNA complex. Nature 356:408–14 [Google Scholar]
  49. Ellenberger TE, Brandl CJ, Struhl K, Harrison SC. 49.  1992. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α helices: crystal structure of the protein–DNA complex. Cell 71:1223–37 [Google Scholar]
  50. Glover JN, Harrison SC. 50.  1995. Crystal structure of the heterodimeric bZIP transcription factor c-Fos–c-Jun bound to DNA. Nature 373:257–61 [Google Scholar]
  51. Müller CW, Rey FA, Sodeoka M, Verdine GL, Harrison SC. 51.  1995. Structure of the NF-κB p50 homodimer bound to DNA. Nature 373:311–17 [Google Scholar]
  52. Panne D, Maniatis T, Harrison SC. 52.  2007. An atomic model of the interferon-β enhanceosome. Cell 129:1111–23 [Google Scholar]
  53. Morin A, Eisenbraun B, Key J, Sanschagrin PC, Timony MA. 53.  et al. 2013. Collaboration gets the most out of software. eLife 2:e01456 [Google Scholar]
  54. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL. 54.  et al. 1987. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–12 [Google Scholar]
  55. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL. 55.  et al. 1987. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–18 [Google Scholar]
  56. Eck MJ, Shoelson SE, Harrison SC. 56.  1993. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology 2 domain of p56lck. Nature 362:87–91 [Google Scholar]
  57. Xu W, Harrison SC, Eck MJ. 57.  1997. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385:595–602 [Google Scholar]
  58. Sicheri F, Moarefi I, Kuriyan J. 58.  1997. Crystal structure of the Src family tyrosine kinase Hck. Nature 385:602–9 [Google Scholar]
  59. Lei M, Lu W, Meng W, Parrini MC, Eck MJ. 59.  et al. 2000. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102:387–97 [Google Scholar]
  60. Abdul-Manan N, Aghazadeh B, Liu GA, Majumdar A, Ouerfelli O. 60.  et al. 1999. Structure of Cdc42 in complex with the GTPase-binding domain of the ‘Wiskott-Aldrich syndrome’ protein. Nature 399:379–83 [Google Scholar]
  61. Rayment I, Baker TS, Caspar DL, Murakami WT. 61.  1982. Polyoma virus capsid structure at 22.5 Å resolution. Nature 295:110–15 [Google Scholar]
  62. Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL. 62.  et al. 1991. Structure of simian virus 40 at 3.8-Å resolution. Nature 354:278–84 [Google Scholar]
  63. Caspar DL. 63.  1992. Virus structure puzzle solved. Curr. Biol. 2:169–71 [Google Scholar]
  64. Skehel JJ, Bayley PM, Brown EB, Martin SR, Waterfield MD. 64.  et al. 1982. Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. PNAS 79:968–72 [Google Scholar]
  65. Reinisch KM, Nibert ML, Harrison SC. 65.  2000. Structure of the reovirus core at 3.6 Å resolution. Nature 404:960–67 [Google Scholar]
  66. Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC. 66.  2002. Structure of the reovirus membrane-penetration protein, Mu1, in a complex with its protector protein, Sigma3. Cell 108:283–95 [Google Scholar]
  67. Chandran K, Zhang X, Olson NH, Walker SB, Chappell JD. 67.  et al. 2001. Complete in vitro assembly of the reovirus outer capsid produces highly infectious particles suitable for genetic studies of the receptor-binding protein. J. Virol. 75:5335–42 [Google Scholar]
  68. Trask SD, Dormitzer PR. 68.  2006. Assembly of highly infectious rotavirus particles recoated with recombinant outer capsid proteins. J. Virol. 80:11293–304 [Google Scholar]
  69. Abdel-Hakim AH, Salgado EN, Fu X, Pasham M, Nicastro D. 69.  et al. 2014. Structural correlates of rotavirus cell entry. PLOS Pathog. 10:e1004355 [Google Scholar]
  70. Wang JH, Yan YW, Garrett TP, Liu JH, Rodgers DW. 70.  et al. 1990. Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature 348:411–18 [Google Scholar]
  71. Ryu SE, Kwong PD, Truneh A, Porter TG, Arthos J. 71.  et al. 1990. Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature 348:419–26 [Google Scholar]
  72. Brunger AT, Kuriyan J, Karplus M. 72.  1987. Crystallographic R factor refinement by molecular dynamics. Science 235:458–60 [Google Scholar]
  73. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC. 73.  1997. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–30 [Google Scholar]
  74. Bullough PA, Hughson FM, Skehel JJ, Wiley DC. 74.  1994. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43 [Google Scholar]
  75. Blacklow S, Lu M, Kim PS. 75.  1995. A trimeric subdomain of the simian immunodeficiency virus envelope glycoprotein. Biochemistry 21:14955–62 [Google Scholar]
  76. Chen J, Skehel JJ, Wiley DC. 76.  1999. N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA2 subunit to form an N cap that terminates the triple-stranded coiled coil. PNAS 96:8967–72 [Google Scholar]
  77. Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA. 77.  1992. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–90 [Google Scholar]
  78. Arnold E, Jacobo-Molina A, Nanni RG, Williams RL, Lu X. 78.  et al. 1992. Structure of HIV-1 reverse transcriptase/DNA complex at 7 Å resolution showing active site locations. Nature 357:85–89 [Google Scholar]
  79. Rodgers DW, Gamblin SJ, Harris BA, Ray S, Culp JS. 79.  et al. 1995. The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. PNAS 92:1222–26 [Google Scholar]
  80. Huang H, Chopra R, Verdine GL, Harrison SC. 80.  1998. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282:1669–75 [Google Scholar]
  81. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. 81.  1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–98 [Google Scholar]
  82. Lescar J, Roussel A, Wien MW, Navaza J, Fuller SD. 82.  et al. 2001. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105:137–48 [Google Scholar]
  83. Gibbons DL, Vaney MC, Roussel A, Vigouroux A, Reilly B. 83.  et al. 2004. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427:320–25 [Google Scholar]
  84. Modis Y, Ogata S, Clements D, Harrison SC. 84.  2004. Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–19 [Google Scholar]
  85. Floyd DL, Ragains JR, Skehel JJ, Harrison SC, van Oijen AM. 85.  2008. Single-particle kinetics of influenza virus membrane fusion. PNAS 105:15382–87 [Google Scholar]
  86. Ivanovic T, Choi JL, Whelan SP, van Oijen AM, Harrison SC. 86.  2013. Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates. eLife 2:e00333 [Google Scholar]
  87. Wei RR, Sorger PK, Harrison SC. 87.  2005. Molecular organization of the Ndc80 complex, an essential kinetochore component. PNAS 102:5363–67 [Google Scholar]
  88. Berger JM, Gamblin SJ, Harrison SC, Wang JC. 88.  1996. Structure and mechanism of DNA topoisomerase II. Nature 379:225–32 [Google Scholar]
  89. Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E. 89.  et al. 2004. X-ray structure of a protein-conducting channel. Nature 427:36–44 [Google Scholar]
  90. Harrison SC. 90.  2004. Whither structural biology?. Nat. Struct. Mol. Biol. 11:12–15 [Google Scholar]
  91. Cheng Y, Zak O, Aisen P, Harrison SC, Walz T. 91.  2004. Structure of the human transferrin receptor–transferrin complex. Cell 116:565–76 [Google Scholar]
  92. Zhang X, Settembre EC, Xu C, Dormitzer PR, Bellamy R. 92.  et al. 2008. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. PNAS 105:1867–72 [Google Scholar]
  93. Chen JZ, Settembre EC, Aoki ST, Zhang X, Bellamy AR. 93.  et al. 2009. Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. PNAS 106:10644–48 [Google Scholar]
  94. Settembre EC, Chen JZ, Dormitzer PR, Grigorieff N, Harrison SC. 94.  2011. Atomic model of an infectious rotavirus particle. EMBO J. 30:408–16 [Google Scholar]
  95. Schmidt AG, Xu H, Khan AR, O'Donnell T, Khurana S. 95.  et al. 2013. Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. PNAS 110:264–69 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-033857
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error