MLlIlib: Scalable Machine Learning on Spark

Xiangrui Meng

 —

DATABRICKS

Collaborators: Ameet Talwalkar, Evan Sparks, Virginia Smith, Xinghao
Pan, Shivaram Venkataraman, Matei Zaharia, Rean Griffith, John Duchi,
Joseph Gonzalez, Michael Franklin, Michael |. Jordan, Tim Kraska, etc.

What is MLIib"

What is MLIib"

MLIlib is a Spark subproject providing machine
learning primitives:

* initial contribution from AMPLab, UC Berkeley
* shipped with Spark since version 0.8

e 33 contributors

What is MLIib"

Algorithms:

* classification: logistic regression, linear support vector machine
(SVM), naive Bayes

e regression: generalized linear regression (GLM)
» collaborative filtering: alternating least squares (ALS)
* clustering: k-means

 decomposition: singular value decomposition (SVD), principal
component analysis (PCA)

Why MLIib?

scikit-learn?

Algorithms:
classification: SVM, nearest neighbors, random forest, ...

regression: support vector regression (SVR), ridge regression,
Lasso, logistic regression, ...

clustering: k-means, spectral clustering, ...

decomposition: PCA, non-negative matrix factorization (NMF),
independent component analysis (ICA), ...

Mahout”?

Algorithms:

classification: logistic regression, naive Bayes, random forest, ...
collaborative filtering: ALS, ...
clustering: k-means, fuzzy k-means, ...

decomposition: SVD, randomized SVD, ...

Mahout?

LIBLINEAR?

HZO? Vowpal Wabbit?

MATLAB?

R
Weka?

scikit-learn?

Why MLIib?

Why MLIib?

 |tis built on Apache Spark, a fast and general
engine for large-scale data processing.

. 120 110
* Run programs up to 100x faster than
Hadoop MapReduce in memory, or
10x taster on disk.

W
o

® Hadoop
% Spark

W
o

Running time (s
(o)}
o

0.9

o

* Write applications quickly in Java, Scala, or Python.

10

Gradient descent

w—w—a- Y g(wizi,y)
1=1

val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (1 <- 1 to numlterations) {
val gradient = points.map { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)) - 1) *x p.y * p.X
).reduce(_ + _)
w -= alpha * gradient

}

11

k-means (scala)

// Load and parse the data.
val data = sc.textFile("kmeans_data.txt")

val parsedData = data.map(_.split(‘ ') .map(_.toDouble)).cache()

// Cluster the data into two classes using KMeans.
val clusters = KMeans.train(parsedData, 2, numlterations = 20)

// Compute the sum of squared errors.

val cost = clusters.computeCost(parsedData)
println(”Sum of squared errors = " + cost)

12

K-means (python)

Load and parse the data
data = sc.textFile("kmeans_data.txt")
parsedData = data.map(lambda line:
array(Lfloat(x) for x in line.split(’ ‘)1)).cache()

Build the model (cluster the data)
clusters = KMeans.train(parsedData, 2, maxIterations = 10,
runs = 1, initialization_mode = "kmeans||")
Evaluate clustering by computing the sum of squared errors
def error(point):
center = clusters.centers[clusters.predict(point)]
return sqrt(sum([x**x2 for x in (point - center)]))

cost = parsedData.map(lambda point: error(point))

.reduce(lambda x, y: x + y)
print(”"Sum of squared error = " + str(cost))

13

val
val
val

val

val

Dimension reduction
+ K-means

points: RDD[Vector] = ...
mat = RowRDDMatrix(points)
pc = mat.computePrincipalComponents(20)

projected = mat.multiply(pc).rows

model = KMeans.train(projected,)

Collaborative filtering

// Load and parse the data
val data = sc.textFile("mllib/data/als/test.data”)
val ratings = data.map(_.split(’',’) match {
case Array(user, item, rate) =>
Rating(user.tolnt, item.tolnt, rate.toDouble)

1)

// Build the recommendation model using ALS
val model = ALS.train(ratings, 1, 20, 0.01)

// Evaluate the model on rating data
val usersProducts = ratings.map { case Rating(user, product, rate) =>
(user, product)

3

val predictions = model.predict(usersProducts)

15

Why MLIib?

learnin
a standard component. g’

Apache Spark

16

Out for dinner?
e Search for a restaurant and make a reservation.
e Start navigation.

 Food looks good? Take a photo and share.

17

Why smartphone”

Out for dinner?

e Search for a restaurant and make a reservation. (¥elewPages?)
e Start navigation. (&PS?%)

 Food looks good? Take a photo and share. (Gamera?)

18

Why MLIib?

A special-purpose device may be better at one
aspect than a general-purpose device. But the cost
of context switching is high:

e different languages or APIs
e different data formats

 different tuning tricks

19

Spark SQL + MLIib

// Data can easily be extracted from existing sources,
// such as Apache Hive.
val trainingTable = sql ("""
SELECT e.action,
u.age,
u.latitude,
u.longitude
FROM Users u
JOIN Events e
ON u.userId = e.userId""")

// Since ‘sql‘ returns an RDD, the results of the above
// query can be easily used in MLlib.
val training = trainingTable.map { row =>
val features = Vectors.dense(row(1), row(2), row(3))
LabeledPoint(row(@), features)

3

val model = SVMWithSGD.train(training)

Streaming + MLIib

val model: KMmeansModel = ...

val tweets = TwitterUtils.createStream(ssc, Some(authorizations(2)))
val statuses = tweets.map(_.getText)
val filteredTweets =

statuses.filter(t => model.predict(featurize(t)) == clusterNumber)

filteredTweets.print()

GraphX + MLIib

val graph = Graph(pages, links)
val pageRank: RDD[L(Long, Double)] = graph.staticPageRank(10).vertices

val labelAndFeatures: RDD[(Long, (Double, Seq((Int, Double)))] = ...
val training: RDD[LabeledPoint] =
labelAndFeatures. join(pageRank) .map {
case (id, ((label, features), pageRank)) =>
LabeledPoint(label, Vectors.sparse(features ++ (, pageRank))

val model = LogisticRegressionWithSGD.train(training)

Why MLIib?

e Spark is a general-purpose big data platform.

e Runs in standalone mode, on YARN, EC2, and Mesos, also
on Hadoop v1 with SIMR.

 Reads from HDFS, S3, HBase, and any Hadoop data source.

 MLIlib is a standard component of Spark providing
machine learning primitives on top of Spark.

23

Why MLIib?

e Spark is a general-purpose big data platform.

e Runs in standalone mode, on YARN, EC2, and Mesos, also
on Hadoop v1 with SIMR.

 Reads from HDFS, S3, HBase, and any Hadoop data source.

 MLIlib is a standard component of Spark providing
machine learning primitives on top of Spark.

« MLIib is also comparable to or even better than other
ibraries specialized In large-scale machine learning.

24

Why MLIib?

Scalability
Performance

User-friendly APls

Integration with Spark and its other components

25

| ogistic regression

relative walltime

Logistic regression - weak scaling

101

4000

I n=6K, d=160K

0

- MLlIlib
—I‘;W | Bl n=12.5K, d=160K
ca 3000f|[|n=25K, d=160K
m n=50K, d=160K
0 I n=100K, d=160K
£ 2000 |l n=200K, d=160K
©
; -
1000/
P H
1 1 1 1 1 1 oJ.DD..—-lED“—-.
5 10 15 20 25 30 MLlIib Matlab
machines

e Full dataset: 200K images, 160K dense features.

e Similar weak scaling.
 MLIib within a factor of 2 of VW’s wall-clock time.

L ogistic regression - strong scaling

35r
— MLIib ‘
|| —VW .’ 1400 ‘
30 - - =|deal .o I 1 Machine
,* 1200 |l 2 Machines
257 R |14 Machines
: 1000 |[_|8 Machines
Q 20} o 16 Machines
5 o 800 32 Machines
o £
Q 4E| =
o 13 = 600"
. =
107 el 400+
¢"
P 200~
57 /
|
0 | | |] | | 0 MLIib VW Matlab
0 5 10 15 20 25 30

machines

e Fixed Dataset: 50K images, 160K dense features.
 MLIib exhibits better scaling properties.
 MLIlib is faster than VW with 16 and 32 machines.

Collaborative filtering

Collaborative filtering

« Recover a rating matrix from a

2 WRwRw | ? subset of its entries.

et | Ww
ostAm uETE L
? A | »oora)

(@)
Linkedm amazon.com

2 ¥r v

WIWW W W

AGAS ?

30

ALS - wall-clock time

MATLAB 15443

Mahout 4206
GraphlLab 291
MLIib 481

 Dataset: scaled version of Netflix data (9X in size).
e Cluster: 9 machines.

 MLIib is an order of magnitude faster than Mahout.
 MLlIlib is within factor of 2 of GraphlLab.

31

Implementation of k-means

Initialization:
e random
e k-means++

* k-means]|

Implementation of k-means

lterations:

 [For each point, find its closest center.

[; = arg H;,in |z — Cj||g

 Update cluster centers.
Zz’,lz—:j Lg
Zi,li:j 1

Cj:

Implementation of k-means

The points are usually sparse, but the centers are most likely to be
dense. Computing the distance takes O(d) time. So the time
complexity is O(n d k) per iteration. We don't take any advantage of
sparsity on the running time. However, we have

|z —cllz = [|z]l3 + ll]l2 — 2(z, c)

Computing the inner product only needs non-zero elements. So we
can cache the norms of the points and of the centers, and then only
need the inner products to obtain the distances. This reduce the
running time to O(nnz k + d k) per iteration.

However, is it accurate?

Implementation of ALS

* proadcast everything
» data parallel

 fully parallel

Alternating least squares (ALS)

f(3)

ﬂ Users

(W) s4010e4 3lA0|

Movies I]

lterate:

1 are 1
fli] kg min,

36

Broadcast everytning

- : A
———————— —

Workers

Master loads (small)
data file and initializes
models.

Master broadcasts
data and initial
models.

At each iteration,
updated models are
broadcast again.

Works OK for small
data.

Lots of
communication
overhead - doesn’t
scale well.

Data parallel

~—

4
e —

orkers

Workers load data

Master broadcasts
iInitial models

At each iteration,
updated models are
broadcast again

Much better scaling

Works on large
datasets

Works well for smaller
models. (low K)

~ully parallel
=
LB

!H
SEETRS
e —

SETEE
& AR
!H

ST

Workers

Workers load data

Models are
instantiated at
workers.

At each iteration,
models are shared via
join between workers.

Much better
scalability.

Works on large
datasets

Implementation of ALS

¢ broadeasteveryhng
s gataparatel

o fully-paraliel

* block-wise parallel

e Users/products are partitioned into blocks and join is
based on blocks instead of individual user/product.

40

New features for v1.x

Sparse data

Classification and regression tree (CART)
SVD and PCA

L-BFGS

Model evaluation

Discretization

41

Contributors

Ameet Talwalkar, Andrew Tulloch, Chen Chao, Nan Zhu, DB Tsai, Evan
Sparks, Frank Dai, Ginger Smith, Henry Saputra, Holden Karau,
Hossein Falaki, Jey Kottalam, Cheng Lian, Marek Kolodziej, Mark
Hamstra, Martin Jaggi, Martin Weindel, Matel Zaharia, Nick Pentreath,
Patrick Wendell, Prashant Sharma, Reynold Xin, Reza Zadeh, Sandy
Ryza, Sean Owen, Shivaram Venkataraman, Tor Myklebust, Xiangrui
Meng, Xinghao Pan, Xusen Yin, Jerry Shao, Ryan LeCompte

42

INnterested”?

Website: http://spark.apache.org

Tutorials: http://ampcamp.berkeley.edu

Spark Summit: http://spark-summit.org

Github: https://github.com/apache/spark

Mailing lists: user@spark.apache.org
dev@spark.apache.org

43

http://spark.apache.org
http://ampcamp.berkeley.edu
http://spark-summit.org
https://github.com/apache/spark
mailto:user@spark.apache.org
mailto:dev@spark.apache.org

