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What is MLlib?
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What is MLlib?

MLlib is a Spark subproject providing machine 
learning primitives: 

• initial contribution from AMPLab, UC Berkeley 

• shipped with Spark since version 0.8 

• 33 contributors
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What is MLlib?
Algorithms:!

• classification: logistic regression, linear support vector machine 
(SVM), naive Bayes 

• regression: generalized linear regression (GLM) 

• collaborative filtering: alternating least squares (ALS) 

• clustering: k-means 

• decomposition: singular value decomposition (SVD), principal 
component analysis (PCA)
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Why MLlib?
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scikit-learn?

Algorithms:!

• classification: SVM, nearest neighbors, random forest, … 

• regression: support vector regression (SVR), ridge regression, 
Lasso, logistic regression, …!

• clustering: k-means, spectral clustering, … 

• decomposition: PCA, non-negative matrix factorization (NMF), 
independent component analysis (ICA), …
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Mahout?

Algorithms:!

• classification: logistic regression, naive Bayes, random forest, … 

• collaborative filtering: ALS, … 

• clustering: k-means, fuzzy k-means, … 

• decomposition: SVD, randomized SVD, …
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Vowpal Wabbit?H2O?

R?
MATLAB?

Mahout?

Weka?
scikit-learn?

LIBLINEAR?
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Why MLlib?
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• It is built on Apache Spark, a fast and general 
engine for large-scale data processing. 

• Run programs up to 100x faster than  
Hadoop MapReduce in memory, or  
10x faster on disk. 

• Write applications quickly in Java, Scala, or Python.

Why MLlib?
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Gradient descent

val points = spark.textFile(...).map(parsePoint).cache() 
var w = Vector.zeros(d) 
for (i <- 1 to numIterations) { 
  val gradient = points.map { p => 
    (1 / (1 + exp(-p.y * w.dot(p.x)) - 1) * p.y * p.x 
  ).reduce(_ + _) 
  w -= alpha * gradient 
}

w  w � ↵ ·
nX

i=1

g(w;xi, yi)
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// Load and parse the data. 
val data = sc.textFile("kmeans_data.txt") 
val parsedData = data.map(_.split(‘ ').map(_.toDouble)).cache() 
"
// Cluster the data into two classes using KMeans. 
val clusters = KMeans.train(parsedData, 2, numIterations = 20) 
"
// Compute the sum of squared errors. 
val cost = clusters.computeCost(parsedData) 
println("Sum of squared errors = " + cost)

k-means (scala)
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k-means (python)
# Load and parse the data 
data = sc.textFile("kmeans_data.txt") 
parsedData = data.map(lambda line:  
               array([float(x) for x in line.split(' ‘)])).cache() 
"
# Build the model (cluster the data) 
clusters = KMeans.train(parsedData, 2, maxIterations = 10, 
             runs = 1, initialization_mode = "kmeans||") 
"
# Evaluate clustering by computing the sum of squared errors 
def error(point): 
    center = clusters.centers[clusters.predict(point)] 
    return sqrt(sum([x**2 for x in (point - center)])) 
"
cost = parsedData.map(lambda point: error(point)) 
         .reduce(lambda x, y: x + y) 
print("Sum of squared error = " + str(cost))
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Dimension reduction 
+ k-means

// compute principal components 
val points: RDD[Vector] = ... 
val mat = RowRDDMatrix(points) 
val pc = mat.computePrincipalComponents(20) 
"
// project points to a low-dimensional space 
val projected = mat.multiply(pc).rows 
"
// train a k-means model on the projected data 
val model = KMeans.train(projected, 10)



Collaborative filtering
// Load and parse the data 
val data = sc.textFile("mllib/data/als/test.data") 
val ratings = data.map(_.split(',') match { 
    case Array(user, item, rate) =>  
      Rating(user.toInt, item.toInt, rate.toDouble) 
}) 
"
// Build the recommendation model using ALS 
val model = ALS.train(ratings, 1, 20, 0.01) 
"
// Evaluate the model on rating data 
val usersProducts = ratings.map { case Rating(user, product, rate) =>   
  (user, product) 
} 
val predictions = model.predict(usersProducts)
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Why MLlib?
• It ships with Spark as  

a standard component.
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Out for dinner?!

• Search for a restaurant and make a reservation. 

• Start navigation. 

• Food looks good? Take a photo and share.
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Why smartphone?

Out for dinner?!

• Search for a restaurant and make a reservation. (Yellow Pages?) 

• Start navigation. (GPS?) 

• Food looks good? Take a photo and share. (Camera?)
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Why MLlib?

A special-purpose device may be better at one 
aspect than a general-purpose device. But the cost 
of context switching is high: 
• different languages or APIs 

• different data formats 

• different tuning tricks
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Spark SQL + MLlib
// Data can easily be extracted from existing sources, 
// such as Apache Hive. 
val trainingTable = sql(""" 
  SELECT e.action, 
         u.age, 
         u.latitude, 
         u.longitude 
  FROM Users u 
  JOIN Events e 
  ON u.userId = e.userId""") 
"
// Since `sql` returns an RDD, the results of the above 
// query can be easily used in MLlib. 
val training = trainingTable.map { row => 
  val features = Vectors.dense(row(1), row(2), row(3)) 
  LabeledPoint(row(0), features) 
} 
"
val model = SVMWithSGD.train(training)



Streaming + MLlib

// collect tweets using streaming 
"
// train a k-means model 
val model: KMmeansModel = ... 
"
// apply model to filter tweets 
val tweets = TwitterUtils.createStream(ssc, Some(authorizations(0))) 
val statuses = tweets.map(_.getText) 
val filteredTweets =  
  statuses.filter(t => model.predict(featurize(t)) == clusterNumber) 
"
// print tweets within this particular cluster 
filteredTweets.print()



GraphX + MLlib
// assemble link graph 
val graph = Graph(pages, links) 
val pageRank: RDD[(Long, Double)] = graph.staticPageRank(10).vertices 
"
// load page labels (spam or not) and content features 
val labelAndFeatures: RDD[(Long, (Double, Seq((Int, Double)))] = ... 
val training: RDD[LabeledPoint] =  
  labelAndFeatures.join(pageRank).map { 
    case (id, ((label, features), pageRank)) => 
      LabeledPoint(label, Vectors.sparse(features ++ (1000, pageRank)) 
} 
"
// train a spam detector using logistic regression 
val model = LogisticRegressionWithSGD.train(training)



Why MLlib?
• Spark is a general-purpose big data platform. 

• Runs in standalone mode, on YARN, EC2, and Mesos, also 
on Hadoop v1 with SIMR. 

• Reads from HDFS, S3, HBase, and any Hadoop data source. 

• MLlib is a standard component of Spark providing 
machine learning primitives on top of Spark. 

• MLlib is also comparable to or even better than other 
libraries specialized in large-scale machine learning.
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Why MLlib?

• Scalability 

• Performance 

• User-friendly APIs 

• Integration with Spark and its other components
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Logistic regression
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Logistic regression - weak scaling

• Full dataset: 200K images, 160K dense features. 
• Similar weak scaling. 
• MLlib within a factor of 2 of VW’s wall-clock time.
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Fig. 6: Weak scaling for logistic regression
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Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F ) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib
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Logistic regression - strong scaling

• Fixed Dataset: 50K images, 160K dense features. 
• MLlib exhibits better scaling properties. 
• MLlib is faster than VW with 16 and 32 machines.
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with respect to computation. In practice, we see comparable
scaling results as more machines are added.
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with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
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MLlib
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Collaborative filtering
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Collaborative filtering

• Recover  a  ra-ng  matrix  from  a  
subset  of  its  entries.  ?

?

?

?

?
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ALS - wall-clock time

• Dataset: scaled version of Netflix data (9X in size). 
• Cluster: 9 machines. 
• MLlib is an order of magnitude faster than Mahout. 
• MLlib is within factor of 2 of GraphLab.

System Wall-­‐clock  /me  (seconds)

MATLAB 15443

Mahout 4206

GraphLab 291

MLlib 481
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Implementation of k-means

Initialization: 

• random 

• k-means++ 

• k-means||



Iterations: 

• For each point, find its closest center.  
 

• Update cluster centers.

Implementation of k-means

li = argmin
j

kxi � cjk22

cj =

P
i,li=j xjP
i,li=j 1



Implementation of k-means
The points are usually sparse, but the centers are most likely to be 
dense. Computing the distance takes O(d) time. So the time 
complexity is O(n d k) per iteration. We don’t take any advantage of 
sparsity on the running time. However, we have 

kx� ck22 = kxk22 + kck22 � 2hx, ci

Computing the inner product only needs non-zero elements. So we 
can cache the norms of the points and of the centers, and then only 
need the inner products to obtain the distances. This reduce the 
running time to O(nnz k + d k) per iteration. 
"
However, is it accurate?



Implementation of ALS

• broadcast everything 
• data parallel 
• fully parallel
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Alternating least squares (ALS)
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Broadcast everything
• Master loads (small) 

data file and initializes 
models. 

• Master broadcasts 
data and initial 
models. 

• At each iteration, 
updated models are 
broadcast again. 

• Works OK for small 
data. 

• Lots of 
communication 
overhead - doesn’t 
scale well. Master

Workers

Ratings

Movie!
Factors

User!
Factors



Data parallel

• Workers load data 

• Master broadcasts 
initial models 

• At each iteration, 
updated models are 
broadcast again 

• Much better scaling 

• Works on large 
datasets 

• Works well for smaller 
models. (low K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings
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Fully parallel
• Workers load data 

• Models are 
instantiated at 
workers. 

• At each iteration, 
models are shared via 
join between workers. 

• Much better 
scalability. 

• Works on large 
datasets 

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors
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Implementation of ALS

• broadcast everything 
• data parallel 
• fully parallel 
• block-wise parallel 

• Users/products are partitioned into blocks and join is 
based on blocks instead of individual user/product.
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New features for v1.x
• Sparse data 

• Classification and regression tree (CART) 

• SVD and PCA 

• L-BFGS 

• Model evaluation 

• Discretization
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Interested?
• Website: http://spark.apache.org 

• Tutorials: http://ampcamp.berkeley.edu 

• Spark Summit: http://spark-summit.org 

• Github: https://github.com/apache/spark 

• Mailing lists: user@spark.apache.org  
                     dev@spark.apache.org
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