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Abstract

Creativity and the understanding of cognitive processes involved
in the creative process are relevant to all of human activities. Com-
prehension of creativity in the arts is of special interest due to the
involvement of many scientific and non scientific disciplines. Using
digital representation of paintings, we show that creative process in
painting art may be objectively recognized within the mathematical
framework of self organization, a process characteristic of nonlinear
dynamic systems and occurring in natural and social sciences. Unlike
the artist identification process or the recognition of forgery, which
presupposes the knowledge of the original work, our method requires
no prior knowledge on the originality of the work of art. The original
paintings are recognized as realizations of the creative process which,
in general, is shown to correspond to self-organization of texture fea-
tures which determine the aesthetic complexity of the painting. The
method consists of the wavelet based statistical digital image process-
ing and the measure of statistical complexity which represents the
minimal (average) information necessary for optimal prediction. The
statistical complexity is based on the properly defined causal states
with optimal predictive properties. Two different time concepts re-
lated to the works of art are introduced: the internal time and the
artistic time. The internal time of the artwork is determined by the
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span of causal dependencies between wavelet coefficients while the
artistic time refers to the internal time during which complexity in-
creases where complexity refers to compositional, aesthetic and struc-
tural arrangement of texture features. The method is illustrated by
recognizing the original paintings from the copies made by the artists
themselves, including the works of the famous surrealist painter René
Magritte.

1 Introduction

Digital image analysis methods have advanced in the past decade at an ac-
celerated pace and the interdisciplinary interaction of scientists involved in
the formulation and application of these methods, on one side, and art ex-
perts on the other, has opened up new possibilities for the advancement of
knowledge of interest to both groups. The impetus for such advancement is
certainly due to the availability of high resolution images of rich colour rep-
resentation, among other things. One of the most interesting and intriguing
problems related to the use of art image processing tools and methods is the
artist identification in the sense of indisputable attribution of the artist to
the work of art [1], [2], [3], [4], [5]. In order to achieve this goal, experts often
rely on a combination of technical data obtained by the use of sophisticated
equipment for mechanical, chemical and optical inspection of the art works
and the visual inspection by art scholars supplemented by information pro-
vided by art historians. Recently, image processing techniques have appeared
which analyse the higher-level features of the painting, such as texture and
brush strokes using 2-dimensional wavelet transform or its complex coun-
terpart [5], a technique which is relevant for our approach presented here.
Although these techniques are sophisticated and in the early stage of devel-
opment, and in spite of encouraging results, there are certain weaknesses that
leave ample room for improvement. In general, all image processing methods
require the original work of art or the training set of original paintings in
order to make the comparison with the works of doubtful origin or uncertain
authorship.

Our approach is based on the premise that the creativity is a process of
artist’s self-organization on the mental level reflected in the self-organization
of forms, patterns, textures and brush strokes of the painting which deter-
mine the aesthetic quality of the artwork. Recognition of creativity as self-
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organization has appeared a few times in the literature, notably in [6], [7] and
in a fascinating book by Rudolph Arnheim [8]. Arnheim writes: ”The actual
functioning of a painting or a piece of music is all mental, and the artist’s
striving toward orderliness is guided by the perceptual pulls and pushes he
observes within the work while shaping it. To this extent, the creative process
can be described as self-regulatory. However, here again, as in the physio-
logical mechanism mentioned above, it is necessary to distinguish between
the balancing of forces in the perceptual field itself and the ”outside” control
exerted by the artist’s motives, plans and preferences. He can be said to
impose his structural theme upon the perceptual organization. Only if the
shaping of aesthetic objects is viewed as a part of the larger process, namely
the artist’s coping with the tasks of life by creating his works, can the whole
of artistic creativity be described as an instance of self-regulation”. Arnheim
wrote this work in 1971 under a strong influence of Gestalt psychology and
before the concept of self-organization was scientifically interpreted in the
works of Prigogine on far-from-equilibrium dynamical systems [11]. More
recently, Zausner has written: ”Creating and viewing visual art are both
nonlinear experiences. Creating a work of art is an irreversible process in-
volving increasing levels of complexity and unpredictable events” (italics by
the present authors). Increasing complexity in time is our apprehension of
self-organization and represents our main guiding principle in the analysis
and comparison of the works of art.

2 Complexity, self-organization and the wavelet

decomposition method

The central concept in our framework [12] is self-organization which is a ubiq-
uitous concept related to the organization and dynamics of complex systems.
In general, self-organization denotes a spontaneous emergence of structures
and organized behavior without any external influence in systems consisting
of a large number of interconnected elements. In general, due to the feedback
relations between constitutive components, the dynamics of self-organizing
systems is non-linear. Self-organization indicates a spontaneous increase in
structural entanglement (complexity) of a system over time. Since there is
no unique definition of complexity there are a number of ways to charac-
terize it depending on the context and scientific interest. Our approach has
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Figure 1: One-dimensional wavelet template known as the Morlet wavelet
(left) and a two-dimensional wavelet displaying three different orientations:
vertical, horizontal and diagonal (right).

been influenced by the method of computational mechanics, developed by
J. Crutchfield and his collaborators, which focuses on the measure of orga-
nization in the systems and on qualitative and quantitative description of
structure and patterns [14], [15]. According to this program the organiza-
tion of a process is its causal architecture embodied in the key concept, the
ε-machine, which reveals the structure of connections between causal states
in the temporal domain. The (statistical) complexity of a process is defined
as the minimal information necessary for optimal prediction, according to
the proposition in [16], where the term ” the true measure of complexity”
was used. An operational and practical formalization of this definition, in
our framework, is based on the wavelet decomposition of the data with the
causal architecture embodied in the wavelet-machine [12].

The wavelet transform in the one-dimensional case (1-D), decomposes
the signal in terms of the shifted (in space or in time) and dilated (scaled)
versions of a wavelet function, which can be considered as a motive or tem-
plate. The signal then represents a superposition of these wavelet templates
with appropriate weights, which are known as wavelet coefficients. In two
dimensions wavelets acquire an additional attribute of orientation, namely
horizontal, vertical or diagonal. Three additional orientations may be gener-
ated by the complex wavelet transform. An image under consideration may
be represented as a superposition of wavelet templates on a grid with appro-
priate coefficients. Figure 1 illustrates the 1-D wavelet and the 2-D wavelet
which consists of three wavelets, namely horizontal, vertical and diagonal. In
the dyadic representation of scale and time (or space), which is the standard
practice, each wavelet coefficient has 2 (1-D) or 4 (2-D) successors on a finer
scale forming a binary tree structure (1-D) or quad-tree (2-D) respectively,
represented in Fig. 2.

Since the interdependence (causal relationship) of the nodes takes place
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frequency         time
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Figure 2: Left: Statistical model of the one-dimensional wavelet transform.
Each coefficient (coloured node) is modeled as a mixture with the hidden
state variable (white node). The standard domain of the wavelet transform
is time (horizontal axis) - frequency (vertical axis) which in our model trans-
forms to the space-time domain. Hidden states are linked to each other
vertically across scales to yield the Hidden Markov tree. Right: Statistical
model of the two-dimensional wavelet tree (quad-tree). Nodes of the same
colour belong to the same scale.
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vertically through the tree according to persistence property [13], we consider
time axis as directed from the coarsest to the finest scale although in a con-
ventional approach this axis represents frequency or scale. The domain of the
one-dimensional temporal signal is considered as spatial (intrinsic for images)
so that by introducing diffeomorphism invariance the wavelet tree becomes
the spatio-temporal tree. The wavelet decomposition is sparse implying that
the number of large coefficients is small and the number of small coefficients
is large. The large coefficients, which we call yang, convey information on
singularities (1-D case) or edges (2-D case) and the small, yin coefficients,
contain information on smooth parts of the signal or the image. The major-
ity of the image energy is contained in the yang coefficients, although the yin
coefficients also store significant energy, just because there are many of them.
Usually the energy of the yin coefficients is only one order lower than the
total energy of the yang coefficients while sometimes it may even surpass the
yang energy. Thus, the yin and yang coefficients of the wavelet decomposition
are in a kind of dynamic balance, justifying our choice of terminology. As a
consequence of the wavelet decomposition each coefficient has an associated
probability distribution indicating its frequency of occurrence. Usually, the
probability distributions, which are unknown (”hidden”), are modelled with
two zero-mean Gaussian distributions whose mixture is sufficient to model
the overall non-Gaussian distribution of wavelet coefficients. To each of the
two distributions corresponds a more frequently occurring (yin) state or a
less frequently occurring (yang) state. The locations in the image contain-
ing sharp edges correspond to the less frequent, but more energy containing
yang coefficients, thus having a wider distribution at every scale. The loca-
tions with prevailing smooth features correspond to the narrow distribution
since the corresponding yin coefficients are more frequent although less en-
ergy containing. The corresponding hidden states S are labelled as 1 and 2,
respectively (Fig.3).

In simple terms, the hidden state of the 2-state model associated with
each coefficient shows whether the template wavelet overlaps an edge or not.
Naturally, it is possible to allocate probability distributions to a larger num-
ber of states, if required. These states are modelled by the so called Hidden
Markov Tree Model (HMTM), characterized by the matrix whose entries are
probabilities of transition from one state to another. The probabilities of
the hidden states along with the probabilities of transition from one state to
another and the variances of the two distributions for each scale and orienta-
tion represent the parameters of the HMM which are jointly evaluated by the
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Figure 3: Two-state, zero-mean Gaussian mixture model for wavelet coeffi-
icients. Each wavelet coefficient is modeled with a hidden state varaible S and
a random variable D. The Gaussian conditional pdf’s for a low-variance state
1 (left) and a high-variance state 2 (middle) and the overall non-Gaussian
pdf (right) are shown.

Expectation Maximization (EM) algorithm given the observed values of the
wavelet coefficients. Two important properties of the wavelet coefficients are
persistence and clustering implying respectively that the large or small values
of the coefficients tend to propagate across scales (in the vertical direction
of the (quad) tree) and the adjacent coefficients (in the horizontal direction)
tend to share the same properties. Due to the persistence property which
determines hierarchical causal dependencies, we chose the direction of per-
sistency propagation as the time axis, although in the conventional approach
this is the frequency axis. At first glance, such practice suggests that we con-
sider causality in a very weak sense, implying that the outcome consistently
proceeds from the cause which completely determines it. However, math-
ematical framework, briefly explained earlier in nontechnical terms, clearly
reveals a probabilistic aspect of causality.

In order to simplify the model a standard procedure known as tying within
the scale is used, so that variance and transition parameters are the same at
each scale of the wavelet transform. Such procedure enables application to
a limited number of images (e.g. one or two) without the need of a train-
ing set. Also, it makes the model less image specific since it rules out an a
priori assumption on existence of smooth regions or edges at certain spatial
locations. As shown in [12], the hidden states are actually the causal states
which are sufficient for prediction purposes, where prediction refers to the
discovery of structure in the signal or in the image. In analogy with [17], the
local statistical complexity is defined as the entropy of the local causal state
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and the global complexity is evaluated as the entropy of the whole hidden
(quad-)tree formed by the hidden states. The local complexity has a specific
physical interpretation in the sense that it is higher if the distribution of the
hidden yang and yin states in the node of the wavelet tree is more uniform.
In that case, there is a higher probability of the yang coefficient appearance
based on the persistence property contained in the nodes at the immedi-
ate neighbouring scales meaning that the information stored in them will be
preserved. It is important to stress that the yin and yang states are statis-
tics of the complete tree of the wavelet coefficients, so that separation into
the future and the past becomes irrelevant to our interpretation of causal-
ity. In spite of idiosyncracy of this method with respect to the treatment of
the past and the future, a similar conceptual framework appeared already
in physics. Namely, in the Feynman-Wheeler picture of classical electrody-
namics the radiation reaction of an electrically charged particle is considered
as an interaction with other particles in both the past and the future [18]
[19]. In contrast to the conventional approach where the future action of
the particle may be determined by conditions at the present moment, in the
Feynman-Wheeler electrodynamics the future behaviour of the particles can-
not be predicted by specifying initial positions and velocities, but additional
information on the past and future behavior of the particles is required.

One of the crucial aspects of any wavelet based signal or image process-
ing technique is the choice of the optimal template (wavelet basis) so that
according to a certain predefined criterion it optimally corresponds to the
image. Our choice of the optimal wavelet basis is the one which maximizes
global statistical complexity. This criterion has been very successful in deter-
mining and predicting properties of dynamical systems through the analysis
of times series [12], [20], and here we extend the application of this crite-
rion in the context of art works where the relationship between complexity
and self-organization occurs naturally. Hence, at the same time the method
determines the optimal wavelet for each particular image which, in turn,
recognizes self-organization as a process which increases local complexity in
time evaluated as the maximal length of the interval at which the complex-
ity function increases monotonically. An additional, special feature of this
method is that it may be concurrently used for noise reduction based on
excellent denoising properties of wavelet based HMM [21].
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3 Complexity, cognitive neuroscience and vi-

sual art

As mentioned earlier, the fundamental course of our approach is based on the
importance of prediction and the information required for optimal prediction.
In order to gain deeper understanding of the basic ideas and direction of our
approach, it is significant to supplement it and contrast it to the recently
proposed predictive coding model of perception, an important new direction
of research in cognitive neuroscience [22], [23], [24]. According to this model
the brain does not passively register sensory input to which it is subjected,
but actively participates by making predictions based on experience. At ev-
ery level of visual hierarchy, which encompasses cortical structures of varying
complexity, predictions are made and propagated to lower levels (top-down)
where they are compared to the representation in the subordinate, lower lev-
els. The signals from the lower levels propagate in the opposite direction
(bottom-up). This comparison generates a prediction discrepancy or predic-
tion error which propagates to higher cortical levels where it regulates the
neuronal representation of sensory input and changes the prediction. This
self-organizing process takes place until the prediction error is minimized
leading to the generation of the most likely causal input. It should be stressed
that the prediction here refers to the prediction of sensory effects from their
cause and not the prediction of sensory states in the future, i.e. forecasting.
Each level in the cortical hierarchy has a twofold function. First, it enables
prediction based on the information obtained from the lower level and second,
it encodes the mismatch between the generated prediction and the bottom-
up evidence (the prediction error) which is propagated to the next higher
level of the cortical hierarchy where further reduction of the prediction error
takes place. This hierarchical model is characterized by transfer of empirical
priors or constraints on the lower levels by the higher ones, thus it is often
attributed as the Bayesian brain model. As a result of this hierarchical cor-
tical process, the visual system organizes the perceptual input in patterns,
thus defining a structure which enables predictability of visual representa-
tions. Reduction of prediction error, equal to the free-energy in the model
of Friston [24], arises from the tendency of the brain and the whole body
to retain homeostasis, an equilibrium state. However, a perception of the
work of art is significantly different from the perception of ordinary things
and events. Namely, art requires complete involvement, which transcends
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simple observation so that the observer acquires an active role as an accom-
plice or as a contender. The role of emotions is also very important since
in the ordinary perception the mismatch between expectations and reality
usually arouses negative emotion. It is undeniable that repeated presenta-
tions in the works of art cause more fluent and economical cortical processing
due to increased predictability (reduced prediction error), however that does
not automatically imply positive emotional arousal. An active observer, and
particularly an art connoisseur, expects to depart the default brain mode
of preferred predictability when observing the work of art and expects a re-
ward, a gratification in the form of a resolution of the prediction error which
results in a pleasurable aesthetic experience. Thus, an unpredictable visual
representation, causing a short-lived prediction error can be very effective
in causing pleasurable aesthetic experience, while redundancy of predictive
patterns may be boring and unemotional. It is not surprising that very often
artists, intuitively and sometimes precisely and according to a strict plan,
combine both predictable and unpredictable patterns in order to exert an
aesthetic impact. A good example of this practice are the works of M.C. Es-
cher, who induced prediction errors by combining repeated two-dimensional
patterns with optical illusions which suggest a higher-dimensional departure
from recurrent patterns. His artworks are also demonstrate how pleasurable
aesthetic experience may emanate even from a long-term predictive error.
Predictable perceptual forms and patterns may be periodically or intermit-
tently disconnected by patches that compel the viewer to complete the vi-
sual experience, as practiced for example, by surrealist painters. Predictable
patterns may also be completely destroyed or fragmented in order for new
patterns and forms to appear. Resolution of prediction errors takes place in
the mind of the viewer and since paintings are static art forms it induces
dynamics which is stimulating and very often aesthetically pleasing. It is
not surprising that art viewers and appreciators expect prediction errors and
enjoy in resolving them while artists consciously create them and sometimes
use them as a kind of personal trade-mark. The interplay of predictive pat-
terns and unpredictable interruptions and the proportion of their occurrence
determines to a large degree the aesthetic experience and gratification and
has a strong impact on the emotional interpretation of the work of art. An
interesting view of the relationship between art and the predictive coding
model from the aspect of Gestalt psychology is given in [?], [?].

There are three important features of the predictive coding model that
should be contrasted with our self-organization model. First, the predictive
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coding model is a general model of perception which explains how the brain
retains its non-equilibrium steady state when subjected to visual stimuli.
Second, the resolution of the prediction error is necessary for the brain to
retain its steady state and the role of emotions may not be of importance in
completing the visual experience. Third, the resolution takes time and this
perceptual synthesis time or ”time of contemplation” [27], is a time experi-
enced and created by the viewer. Our framework, which we may refer to as
the creativity model, is concerned with the work of art which represents an
authentic reflection of the self-organizing cognitive and emotional processes
taking place in the artist’s brain. Thus, we indirectly map the creative pro-
cess of the artist’s brain into a self-organizing wavelet tree along with the
statistical properties of the wavelet coefficients. The brain of the artist in
the act of creation is almost without exception, not in equilibrium which
leads to innovation and the emergence of new ideas. Apparently the artist is
trying to remain in such a state until various possibilities of artistic expres-
sion are explored or until the emergent ideas are actualized in the painting.
The prediction errors which may be manifested in the content, arrangement
of forms, aesthetic arrangements, colour juxtapositions, texture, design, etc.,
are deliberately created in order to induce a specific aesthetic and emotional
impact on the observer and to induce the creative process of art contempla-
tion. However, the emotional and aesthetic feedback upon the artist is also
of great relevance, thus the artist creates and resolves the predictive errors
according to his mental and emotional state. Finally, there is a specific form
of time associated with the work of art, essentially with its texture, best de-
scribed by the term ”the intrinsic time of the work of art” [27], which we may
be detected within our framework. To quote Souriau, ”There is no longer a
question of a simple psychological time of contemplation, but of an artistic
time inherent in the texture itself of a picture or a statue, in their compo-
sition, in their aesthetic arrangement. Methodologically the distinction is
basic, and we come here (notably with Rodin’s remark) to what we must call
the intrinsic time of the work of art. The significance of these words (valid
for any of the arts) is particularly clear and striking when we deal with the
representational arts, as in the normal case with painting and sculpture (and
also for literature, the theater, etc.)”. The psychological time mentioned by
Souriau although mathematically intriguing is beyond the current analysis
and will be addressed elsewhere (M. R & M. M., in perparation). In our
HMM wavelet model of self-organization, we distinguish two different con-
cepts of time. The first, referred to as the internal time is recognized as the
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progression of causal dependency among wavelet coefficients extending from
the coarsest to the finest scale. The internal time axis is graphically repre-
sented as the vertical axis of the one-dimensional and the two-dimensional
(quad-tree) presented in Fig. 3. The second concept of time is related to
the smooth increase of local complexity and is completely determined by the
compositional and aesthetic arrangement of texture features of the image.
Since it coincides with the ”intrinsic time of the work of art” of Souriau we
refer to it as the artistic time, and it actually represents one time frame of
the internal time. In the next section this concept will be illustrated and
presented in more detail.

4 Self-organization and complexity in the wavelet

analysis of paintings

Although there are many measures of complexity, it is generally agreed that
the things which are completely random or completely uniform (or orderly)
are not complex. As a matter of fact, these two opposite aspects of the
disorder have zero complexity and the real complexity lies between them.
The maximal complexity corresponds to disorder lying somewhere close to
halfway between these two extrema. In the excerpt from [8], presented ear-
lier, Arnheim mentions that the creation and communication of the artistic
idea is all mental; and we add here that the same is true of the reception
and understanding of this idea by the audience. Hence, the artistic process
creates a two-way information channel which contains encoded and decoded
symbols, where a symbol, in the context of paintings, encompasses colours,
texture, paints, brush strokes, forms, patterns, etc. Based on the information
exchanged in this channel, we find it appropriate to adopt the concept and
the first law of aesthetic complexity [28] which states that: ”The aesthetics
of artistic forms and designs depend on their complexity. Too condensed
coding makes a decryption of a work of art impossible and is perceived as
chaotic by the untrained mind, whereas too regular structures are perceived
as monotonous, too orderly and not very stimulating”. Accordingly, the more
complex a pattern is in terms of artistry and symbolisation, the more diffi-
cult is its decryption. A fast or easy decryption may cause boredom while a
difficult decryption may lead to irritation and confusion. Hence the concept
of aesthetic complexity may be perceived as the general form of complexity.
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In our statistical complexity approach we are focused on discovering causal
relationships: how one symbol leads to or brings about another symbol, thus
establishing a direct relationship between complexity, self-organization and
creativity in art. In order to illustrate our method we present the analysis
results of two data sets, one of which was previously analysed using different
techniques and which is freely available for download [29].

The first data set considered here consists of 7 high-resolution images
of paintings by the Dutch artist Charlotte Caspers. She was commissioned
by Ingrid Daubecheis and the members of the Machine Learning and Image
Processing for Art Investigation Research Group at Princeton University to
paint 7 paintings of relatively small size (approximately 25 cm x 20 cm) of
different styles and using different materials[29]. Within the next few days
she has also painted a copy for each painting using the same paints, brushes
and grounds and under the same lighting conditions. For the presentation
of our method and the results of the analysis, it is of interest to mention
the remark of I. Daubecheis [29] that C. Caspers spent close to 2 times
more time on creating each copy as compared to the original, indicating
that ”painting a copy is a more painstaking process than the spontaneous
painting of an original”. The copies were of such high quality that the artist
was convinced that it would not be able to distinguish copies from originals.
The high-resolution digital images were downloaded from the home site of
the Princeton group1.

In the so called RGB (Red, Green, Blue) colour space, each pixel in a
colour image is represented by red, green and blue components. Each com-
ponent may be treated as a separate image and for each painting we perform
the analysis for each colour separately. The wavelet transform was applied in
a twofold manner, namely on the whole painting and on all the patches of size
512 x 512 pixels, applying overlapping where necessary due to the dimension
of the painting. The top nine scales of the transformation are used to form
the causal structure which represents the cornerstone of our method. Note
that all of the methods for artist authentication based on the wavelet decom-
position apply the opposite practice, namely they use the coefficients at the
few finest scales which contain the majority of coefficients. The templates
from the standard orthogonal and biorthogonal wavelet families are used:
Haar (haar), Daubechies (db2), Symlet (sym3), Coiflet (coif1), Biorthogonal
(bior1.3), Reverse Biorthogonal (rbior1.3) and Discrete Meyer (dmey). The

1http://web.math.princeton.edu/ipai/index.html
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Figure 4: A still-life painting by Charlotte Caspers commisioned by Ingrid
Daubechies and the Art Investigation group at Princeton University. The
canvas is a crude, absorbing jute-type. Soft brushes were used.

wavelet transform has a layered structure, where each layer corresponds to
a particular scale. Each layer consists of the slightly blurrier version of the
image and the wavelet transforms along the three directions (horizontal, ver-
tical and diagonal) which need to be complemented with detail information
in order to reconstruct the original image. Parameters of the HMM model
are evaluated for two, three, four and five hidden states, however, we have
found no substantial difference between results for the two-state and for the
higher states, so that only paradigmatic results for the two-state case are
presented. The local complexity is evaluated as the Shannon entropy of the
hidden variables in each node (coefficient) and the global entropy is evalu-
ated as the entropy of the whole wavelet tree. The crucial importance of the
global entropy is that it measures the increase of complexity in time so that
self-organization of various degrees may be recognized, for example weak and
strong self-organization may be defined accordingly. Higher global entropy
implies stronger self-organization requiring more information for prediction
while the weaker self-organization has the opposite attributes. Few of the
paintings from this set and their images are presented in Figs. 4, 5 and 6.

The two dimensional wavelet-transform acts as an orientation microscope,
which detects discontinuities of images such as point singularities (contour
vertices) or orientation features such as edges, borders, segments or interwo-
ven, mikado type edges. In Fig 7 we present local complexity of the painting
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Figure 5: The second set of paintings by Charlotte Caspers, based on the
use of acrylic paint.The brush strokes on a commercially primed canvas are
visibly accentuated. Both soft and hard brusheds were used.

Figure 6: The third set of paintings by Charlotte Caspers painted with oil
paints and soft brushes on a chalk-ground. The technique is similar to the
15-th century Flemish paintings.
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Figure 7: Local complexity of the paintings shown in Fig. 4. Each color
corresponds to a different wavelet: black (Haar), red (db2), yellow (sym3),
green (coif1), magenta (bior1.3), purple (rbior1.3) and blue (dmey).

and its copy presented in Fig 4 as an illustration of some of the representative
characteristics of this quantity. Continual, smooth increase

of local complexity indicates self-organization and the corresponding time
during which the self-organization takes place we refer to as the time of self-
organization. In most of the cases considered, local complexity corresponding
to the original painting has smoother characteristics and displays longer self-
organization for the majority of wavelets than in the case of a copy. For
example, the rbior1.3 wavelet displayed in blue colour, exhibits the long-term
self-organization which spans almost 5 time units in the case of the original
painting (left) while it displays self-organization only during one time unit in
the case of a copy (right). From the aspect of local complexity the optimal
wavelet is the one which displays the lengthiest self-organization, time-wise.
However, as mentioned earlier global complexity quantifies self-organization
for the whole wavelet tree and represents the most important measure of
complexity and self-organization.

It is useful to consider and compare global complexity characteristics in
different orientations, so the global complexity values are presented corre-
sponding to horizontal, vertical and diagonal directions. The mean value
of these orientational complexities is the most important quantity which we
simply refer to as the global complexity. First, we present typical results of
the analysis performed on the whole painting and Table 1 displays orienta-
tional complexities and the global complexity for the red component of the
paintings presented in Fig. 4.
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Global complexity; paintings Fig. 4, colour: red
Wavelet haar db2 sym3 coif1 bior1.3 rbior1.3 dmey
Original 0.7765 0.6258 0.6763 0.7435 0.7644 0.7921 0.8134
Copy 0.7804 0.7178 0.7496 0.6298 0.7841 0.7856 0.5674
Diagonal complexity
Original 0.8992 0.6500 0.7196 0.8945 0.8895 0.9492 0.9534
Copy 0.8977 0.8052 0.8170 0.8933 0.8922 0.9034 0.7852
Horizontal complexity
Original 0.7845 0.7222 0.8130 0.7754 0.7486 0.7832 0.8278
Copy 0.7896 0.8365 0.8188 0.8045 0.8044 0.7342 0.8026
Vertical complexity
Original 0.6459 0.5053 0.4962 0.5607 0.6552 0.6439 0.6591
Copy 0.6537 0.5117 0.6129 0.4191 0.6450 0.6191 0.6149

Table 1: The global complexity and the orientational complexities evaluated
for the entire paintings of Fig. 4. The colour in the RGB colour space is red.
The optimal wavelet is denoted in bold.

The optimal wavelet corresponds to the maximum global complexity and
is marked in bold. In Table 2. the global and directional complexities are
presented for the red component of the paintings presented in Fig. 5. Similar
results are obtained for the green and blue components and are not shown
here.

These Tables capture paradigmatic characteristics of all paintings from
this set with respect to self-organization and complexity. First, the global
complexity corresponding to the optimal wavelet of original paintings is al-
ways larger than the reciprocal global complexity of copies. Second, the
optimal wavelet may be the same for all orientations, including the global
self-organization indicator although this is not the rule. It is natural to agree
that the complexity of the painting may be different in different directions
depending on, for example, artist’s technique or the thematic content. For
example, in Table 1 the discrete Meyer wavelet persists as an optimal wavelet
for the original painting for all directions as well as for the global complexity,
while the optimal wavelet for the copy is the same (rbior1.3) only for the
diagonal direction and for the global complexity. This inconsistency is also
an important indicator of the lack of self-regulating flow of ideas which ma-
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Global complexity; painting Fig. 4, colour: green
Wavelet haar db2 sym3 coif1 bior1.3 rbior1.3 dmey
Original 0.4515 0.4284 0.4368 0.4240 0.4438 0.4339 0.3875
Copy 0.4177 0.4453 0.3936 0.4027 0.4244 0.3954 0.3890
Diagonal complexity
Original 0.5123 0.4601 0.4594 0.4445 0.5151 0.4306 0.4314
Copy 0.4753 0.46163 0.41101 0.4073 0.4868 0.4091 0.4242
Horizontal complexity
Original 0.4179 0.3945 0.3988 0.3921 0.3976 0.4147 0.3368
Copy 0.3759 0.4171 0.3175 0.3554 0.3400 0.3342 0.3279
Vertical complexity
Original 0.4242 0.4303 0.4523 0.4355 0.4168 0.4566 0.3942
Copy 0.4019 0.4551 0.4521 0.4452 0.4464 0.4428 0.4148

Table 2: The global complexity and the orientational complexities evaluated
for the entire paintings of Fig. 5. The colour in the RGB colour space is red.
The optimal wavelet is denoted in bold.

terializes on canvas, or it could be the result of a long creative process which
takes days to complete and which lacks creative continuity. However, from
the information provided in ref.[29] we may rule out the latter instance. We
have found that for almost all the paintings the maximum global complex-
ity and the maximum diagonal complexity correspond to the same (optimal)
wavelet, or, in rare cases when this condition is not fulfilled the value of the
diagonal complexity corresponding to the optimal wavelet is very close to the
maximal diagonal complexity. For example, in Table 2 the maximum diagonal
complexity corresponds to the rbior1.3 wavelet, however the value correlative
to the optimal Haar wavelet is very close to the value of the rbior1.3 wavelet.

The second approach is based on the analysis of patches of size 512 x 512
pixels, and in general we have found that the distinction between originals
and copies is more apparent than in the case when the whole painting is sub-
ject to the wavelet HMM analysis. Tables 3 and 4 present global complexity
results for one of the patches of paintings in Fig. 4 and 5 respectively.

For all patches and all the paintings from the set the mean global com-
plexity of an original painting is larger than the corresponding value of a copy.
We have found that in a few cases the horizontal or the vertical complexity
of a copy may be larger than the analogous value of an original, however the
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Global complexity; paintings Fig. 4, patch 512 x 512, colour: red
Wavelet haar db2 sym3 coif1 bior1.3 rbior1.3 dmey
Original 0.5470 0.5508 0.5543 0.5648 0.5187 0.5332 0.4831
Copy 0.5116 0.5382 0.5091 0.5326 0.5010 0.5049 0.4236

Table 3: The global complexity evaluated for one patch of the size 512 x 512
pixels of the paintings shown in Fig. 4. The colour of the RGB spectrum is
red.

Global complexity; paintings Fig. 6, patch 512 x 512, colour: red
Wavelet haar db2 sym3 coif1 bior1.3 rbior1.3 dmey
Original 0.5772 0.5900 0.5807 0.5797 0.5775 0.5696 0.4878
Copy 0.2686 0.2883 0.2967 0.2931 0.2610 0.3079 0.2832

Table 4: The global complexity evaluated for one patch of the size 512 x 512
pixels of the paintings shown in Fig. 5. The colour of the RGB spectrum is
red.

contributions of other two orientational complexities prevail and the mean
global complexity is always larger for an original.

The second set of images consists of two paintings by Rene Magritte,
known under the title ”La saveur des larmes” (”The flavour of tears”). The
paintings are presented side by side in Fig. 8. One is an original, but which
one? And which one is a copy? One is in the Barber Museum of Fine
Arts in Birmingham, UK and the other in the Musées Royaux des Beaux
Arts de Belgique in Brussels. The canvases are both dated 1948 and since
Rene Magritte was a Surrealist with an exquisite sense of humour he might
have been enjoying a charming and probably profitable joke. Magritte may
well have seen his forgeries as part of the conflict between the real and the
unreal, as the tension between these two realms was one of the hallmarks of
the Surrealist movement. Magritte is known to have played a joke with the
audience when he hung his forgery of Max Ernst’s painting ”The Forest” in
place of the original in 1943. Giorgio de Chirico, another famous surrealist,
in his later years created what he called ”self-forgeries” of the paintings from
his earlier period. He would backdate them with an intention to make fun of
the art critics as a revenge for their critique of his later works.

Art experts now consider that both canvases are Magritte originals, and
assume he forged his own work to make money during the war years. The
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Figure 8: Two paintings ”The Flavour of tears” by René Magritte. Which
one is an original and which one is a copy?

existence of both paintings was unknown until 1983 when one of the canvases
turned up at an auction in New York while the other remained in Europe.
The two versions of the same painting are identical by all means and the
experts agree that even the holes made by a caterpillar are exactly the same
on the two canvases. Even the inscriptions on the back of the paintings
are the same and undiscernible. So, which one of the two canvases may be
considered as an original? We show that indisputably one of them has more
indicators of creative artistic idea transferred on canvas, then the other so
we claim with utmost confidence, that only one of them is the result of self-
regulatory creative work. The other is a copy by the original artist. In order
to distinguish them in the text we refer to them as ”The flavour of tears 1”
and ”The flavour of tears 2”. As an illustration, in Tables 5 and 6 we present
a comparison of global and orientational complexities of the two paintings
for the dominant colours of the RGB spectrum, namely the blue and the
green colour respectively. Similar results leading to the same conclusions
are obtained for the red colour, and are not presented here. The analysis is
preformed on the entire painting.

It can be immediately noticed that the Symlet (sym3) is the optimal
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Global complexity; ”The Flavour of Tears 1 and 2”; colour: blue
Wavelet haar db2 sym3 coif1 bior1.3 rbior1.3 dmey
1 0.1845 0.2804 0.3186 0.2612 0.1950 0.2225 0.2780
2 0.1795 0.2427 0.2905 0.2807 0.1918 0.1979 0.2711
Diagonal complexity
1 0.1849 0.4275 0.5211 0.3706 0.1824 0.2241 0.3917
2 0.1668 0.3201 0.3707 0.2778 0.1682 0.1581 0.3448
Horizontal complexity
1 0.2010 0.2048 0.2088 0.2066 0.2018 0.2293 0.2087
2 0.2138 0.2247 0.2179 0.2250 0.2123 0.2113 0.2016
Vertical complexity
1 0.1677 0.2088 0.2298 0.2063 0.1708 0.2141 0.2335
2 0.1578 0.1831 0.1878 0.1760 0.1596 0.1755 0.1688

Table 5: The global complexity and the orientational complexities evaluated
for the Magritte’s paintings. The colour in the RGB colour space is blue.
The optimal wavelet is denoted in bold.

Global complexity; ”The Flavour of Tears 1 and 2”; colour: green
Wavelet haar db2 sym3 coif1 bior1.3 rbior1.3 dmey
1 0.1907 0.2836 0.3209 0.2663 0.1908 0.2264 0.2840
2 0.1746 0.2396 0.2560 0.2251 0.1747 0.1802 0.2442
Diagonal complexity
1 0.2013 0.4322 0.5219 0.3816 0.1987 0.2367 0.4049
2 0.1620 0.3195 0.3691 0.2812 0.1637 0.1556 0.3585
Horizontal complexity
1 0.2085 0.2074 0.2271 0.2192 0.1994 0.2265 0.2126
2 0.2113 0.2222 0.2154 0.2145 0.2009 0.2089 0.2043
Vertical complexity
1 0.1722 0.2114 0.2237 0.2080 0.1741 0.2160 0.2346
2 0.1504 0.1771 0.1834 0.1697 0.1515 0.1762 0.1699

Table 6: The global complexity and the orientational complexities evaluated
for the Magritte’s paintings. The colour in the RGB colour space is green.
The optimal wavelet is denoted in bold.

wavelet for both colour cases and that the global complexity and the diagonal
complexity for the painting 1 are considerably larger than for the painting 2.
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Also, the optimal wavelet values for horizontal and vertical directions are also
in favour of painting 1 so that we may ascribe to this canvas the attribute of
originality in the sense that it represents an outcome of the creative artistic
expression. Similar results are obtained when the analysis is performed on
patches of size 512 x 512 pixels. Tables 7 and 8 illustrate typical results of
this analysis.

Global complexity; ”The Flavour of tears 1 and 2”, patch A, colour: blue
Wavelet haar db2 sym3 coif1 bior1.3 rbior1.3 dmey
1 0.1888 0.2754 0.3231 0.2564 0.1882 0.2176 0.2717
2 0.1712 0.2410 0.2545 0.2216 0.1721 0.1800 0.2378

Table 7: The global complexity evaluated for one, typical patch of the size
512 x 512 pixels of the Magritte’s paintings. The colour of the RGB spectrum
is blue.

An interesting feature of these results is that they show remarkable consis-
tency between self-organisation indices for the entire painting and for patches
of size 512 x 512 pixels when either of the two dominant colours, blue and
green, are analysed. Similar results are obtained for the red colour (not
shown) and for patches positioned in the areas dominated by the red colour
(drapes on the right hand side of the paintings). Minor departures from this
trend were noticed in a small number of cases, and only for horizontal or
vertical complexities. The consistency of the results suggests that Magritte
was highly skilled in copying his own work and that perhaps he devised a
special technique for that purpose, a practice that would be in the spirit of
surrealism and surrealists.

Global complexity; ”The Flavour of tears 1 and 2”, patch B, colour: green
Wavelet haar db2 sym3 coif1 bior1.3 rbior1.3 dmey
1 0.1907 0.2836 0.3209 0.2665 0.1906 0.2276 0.2840
2 0.1888 0.2754 0.3131 0.2566 0.1882 0.2176 0.2718

Table 8: The global complexity evaluated for one, typical patch of the size
512 x 512 pixels of the Magritte’s paintings. The colour of the RGB spectrum
is green.
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5 Conclusion

Several writers on art as either theoreticians or practitioners, or both, have
rightfully hypothesized that artistic creativity has many properties in ac-
cord with nonlinear dynamics, e.g. in [7] and references therein. However,
even before the advent of chaos theory and non-equilibrium thermodynam-
ics, it was suggested that self-regulatory and self-organizing processes may
be recognized in the works of art. The mind of an artist is an open, dissipa-
tive system which absorbs information from the external world and produces
entropy which could take the form of an artwork. We suggest here that artis-
tic creativity, generally perceived as aesthetic or pleasing is self-organisation
process which could be detected by examining the work of art and we focus
our attention on paintings which, unlike other forms of art, are frequently
subject to forgeries. When the work of art is created different elements,
forms and textures are assembled and juxtaposed in a specific way, creating
a higher organization than in the case when the same constituents are by
themselves. Self-organizing processes in the brain of an artist create ideas
and emotions which, by means of the artist’s brush stroks are transferred
on canvas creating ”higher organization of meaning in the work of art”. We
show that complexity and self-organisation are numerical quantities which
could be used to differentiate between an original, creative, artistic intension
and realization from the technical process which produces a copy of the work
of art. Although the method shows very good and promising results in recog-
nizing creative process, further improvements are possible. A non-exhaustive
list of some of the advantages of the presented framework in comparison with
the existing methods for art work analysis and artist authentication are the
following:

In order to obtain reliable and conclusive results it is not necessary to use
the complex wavelet transform which provides three additional orientations
with respect to the ordinary wavelet transform.

A sophisticated analysis of brush strokes is not necessary and it is not
necessary to use separate statistical models for texture-based and brush-
stroke features.

It is not necessary to know which work of art is original as long there is
another art work for comparison from the aspect of originality and creativity.

It is not necessary to have a training set consisting of other works of art
of the same artist.

It is not necessary to introduce various distance (dissimilarity) measures
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Finally, we regard our work as an important step in integration of artistic
and scientific perspectives and an attempt in creating common ground for
communication of ideas between arts and sciences.
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